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Introduction

This notes accompany one of the three parts of the 2022 MSRI graduate
summer school on Tropical Geometry. The goal of the mini-course is to
showcase the interactions of tropical and logarithmic geometry with Hurwitz
theory, concerned with the enumeration of maps of Riemann surfaces.

The main question in Hurwitz theory dates all the way back to the late
1800s: how many maps of Riemann Surfaces does one have when fixing
all the available discrete invariants? Over the last century, this question
has experienced a wealth of translations (to topology, combinatorics, group
theory, representation theory...) and found itself contributing to the most
disparate areas of mathematics (integrable systems, mathematical physics,
string theory...).

In this mini-course we focus on how Hurwitz theory interlaces with the
geometry of moduli spaces of curves. The basic connection is that Hurwitz
numbers are naturally interpreted as the degrees of appropriate branch mor-
phisms among moduli spaces of covers and moduli spaces of target curves.
After appropriately compactifying the moduli spaces, such degrees are ac-
cessed through intersection theory.

The first manifestation of this phenomenon is the remarkable ELSV for-
mula that expresses simple Hurwitz numbers as Hodge integrals on the mod-
uli spaces of curves. This formula was instrumental in explaining polynomial
properties of simple Hurwitz numbers and in Okounkov-Pandharipande’s
proof of Witten’s conjecture. A discussion of the ELSV formula, together
with a brief sketch of how it may be proved through Atyiah-Bott localization,
is provided as a slightly more advanced topic.

We next explore how an enumerative problem analogous to the Hurwitz
problem arises in tropical geometry. One may study moduli spaces of tropical
covers to the tropical line. These are cone complexes with a natural inte-
gral structure. They admit a tropical branch morphism with a well defined
degree that one defines to be a tropical Hurwitz number. Studying such a
degree leads to a combinatorial algorithm that allows one to compute tropi-
cal Hurwitz numbers and to witness their algebraic combinatorial properties.
A correspondence theorem then establishes that tropical Hurwitz numbers
agree with classical ones. Tropical geometry thus gives a way to understand
combinatorial properties of families of algebraic Hurwitz numbers. This part
of the course connects with the Hannah’s mini-course, which in particular
explores some of the foundations of tropical intersection theory.

An insightful perspective on the correspondence theorem for Hurwitz
numbers goes through degeneration: the number of covers of curves of fixed
arithmetic genera can be computed by “shrinking a bunch of loops”, and
reducing to count maps among nodal curves of geometric genus zero, i.e.,
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6 CHAPTER 0. INTRODUCTION

decomposing the cover to a union of rational components. This technique
leads to a combinatorial approach to Hurwitz theory which is well captured
and organized by tropical geometry and in particular directly explains the
correspondence theorem.

Another advanced topic appendix we include consists of an open con-
jecture, originally by Goulden-Jackson-Vakil, about finding an intersection
theoretic formula similar to ELSV for double Hurwitz numbers.

Next, we focus on how Hurwitz numbers (double and more) may be ob-
tained as intersection numbers on moduli spaces closely related to the moduli
space of curves. First we present an approach that uses the double ramifi-
cation cycle to obtain an intersection theoretic formula for double Hurwitz
numbers.

Next we turn our attention to a recent perspective, which has been
brought about by the development of logarithmic geometry: given a counting
problem, logarithmic geometry gives access to two related moduli spaces, an
algebro geometric oneM and a tropical oneMtrop. One may in fact use the
tropical one to define a birational modification of the moduli space of curves
in such a way that M intersects the boundary of this birational modifica-
tion in a dimensionally transverse way. As explained in Dhruv’s minicourse,
piecewise polynomial functions on the moduli space of tropical curves deter-
mine cohomology classes on this birational transform. We show how some
of these classes may be used to compute Hurwitz numbers. This approach
allows us to extend the Hurwitz problem to moduli spaces of twisted differ-
entials, circumventing the issue that these spaces lack a branch morphism.

These notes are meant to move fairly quickly through a lot of material, so
they are by no means intending to be a complete reference. Many references
are provided to help the interested reader. Our hope is to present a coherent
and compelling story showcasing the development over many years in our
understanding of Hurwitz theory.

Any corrections or suggestions for the improvement of the notes will be
highly appreciated!



CHAPTER 1

Classical Hurwitz Theory

In this first lecture we review some classical perspectives on Hurwitz
numbers, and connect the problem of enumeration of maps of Riemann Sur-
faces with the representation theory of the Symmetric group.

1. Hurwitz Numbers: geometry

From a geometric point of view, Hurwitz numbers count the number of
maps of Riemann surfaces with fixed discrete data and a fixed branch divisor.

Definition 1.1 (Geometry). Let (Y, p1, . . . , pr, q1, . . . , qs) be an (r + s)-
marked smooth Riemann Surface of genus h. Let η = (η1, . . . , ηs) be a vector
of partitions of the integer d. We define the Hurwitz number :

Hr
g→h,d(η) ∶= weighted number of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

degree d covers

X
fÐ→ Y such that ∶

● X is connected of genus g;
● f is unramified over

X ∖ {p1, . . . , pr, q1, . . . , qs};
● f ramifies with profile ηi over qi;
● f has simple ramification over pi;
○ preimages of each qi with same
ramification are distinguished by

appropriate markings.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Each cover is weighted by the number of its automorphisms.

Figure 1.1 illustrates the features of this definition.

Exercise 1. Formalize the notion of isomorphism and automorphism of
Hurwitz covers.

Torus

f

Sphere

3

(3)

1

      (2,1)

2

(2,1)

1  0

(2,1)

      (3)
3

H    (  ,    )

Figure 1.1. The covers contributing to a given Hurwitz Number.
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8 CHAPTER 1. CLASSICAL HURWITZ THEORY

Remarks:
(1) For a Hurwitz number to be nonzero, r,g, h and η must satisfy the

Riemann Hurwitz formula

2gX − 2 = d(2gY − 2) + ∑
x∈X
(rf(x) − 1).

The above notation is always redundant, and it is common practice
to omit appropriate unnecessary invariants.

(2) The last condition ○ was introduced in [GJV03] for the purpose of
eliminating automorphism factors. These Hurwitz numbers differ
by a factor of ∏Aut(ηi) from the classically defined ones where
such condition is omitted.

(3) One might want to drop the condition of X being connected, and
count covers with disconnected domain. Such Hurwitz numbers are
denoted by H●.

Exercise 2. If you have never proved the Riemann-Hurwitz formula,
this is a good time to do it. Here are two natural approaches:

(1) Use the fact that the topological Euler characteristic of a compact
surface of genus g is 2 − 2g, and that it can be computes using an
appropriate cellular decomposition of a topological surface.

(2) Use the fact that the degree of the canonical divisor for a Riemann
surface of genus g is 2g − 2, and that the canonical divisor is the
(equivalence class of the) divisor of a(ny) meromorphic one form.

Exercise 3. Compute

H0
0→0,d((d), (d)) =

1

d
using Definition 1.1 for Hurwitz numbers. You may assume that the two
branch points are at 0 and ∞ of the base P1. To get to the answer go
through the following steps:

● what are all degree d maps P1 → P1 that have a single preimage
above 0 and above ∞?
● show that they are all isomorphic.
● pick one such map and compute its automorphism group.

This exercise should have convinced you (in case you needed convincing)
that computing Hurwitz numbers via the definition is not an easy task.

2. Hurwitz numbers: topology

It follows from basic facts of complex analysis that holomorphic functions
of compact Riemann Surfaces are covering spaces away from a finite set of
points. Conversely, any topological cover of a punctured Riemann Surface
gives rise to a unique holomorphic map of compact Riemann Surfaces.

Definition 2.1. A continuous function between compact topological
surfaces p ∶X → Y is called a ramified cover if there is a finite set of points
B ⊂ Y such that:

● p−1(B) ⊂X is finite;
● p ∶X ∖ p−1(B)→ Y ∖B is a covering.
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Figure 1.2. Monodromy representation for the cover f .

We may now concisely say that maps of Riemann Surfaces are ramified
covers of topological surfaces. The following classical theorem establishes the
converse statement: endowing the base of a ramified cover with a complex
structure determines a unique map of Riemann Surfaces.

Theorem 1.1 (Riemann’s Existence Theorem, [CM16], § 6.2). Let Y
be a compact Riemann Surface and X○ a topological surface. Assume that
there are a finite number of points b1, . . . , bn ∈ Y and a function f○ ∶ X○ →
Y ∖{b1, . . . , bn} which is a topological cover of finite degree. Then there exists
a unique (up to isomorphism) compact Riemann Surface X which contains
X○ as a dense open set (in fact X is X○ plus a finite number of points) such
that f○ extends to f ∶X → Y a holomorphic map of Riemann Surfaces.

The Riemann existence theorem allows us to translate the Hurwitz prob-
lem from complex analysis to topology, making it a bit more approachable.

Exercise 4. Compute

H2g+2
g→0,2(ϕ) =

1

2
by interpreting the Hurwitz number as a count of topological ramified covers.

3. Hurwitz numbers: representation theory

The problem of computing Hurwitz numbers is in fact a discrete problem
and it can be approached using the representation theory of the symmetric
group. A standard reference here is [FH91].

Given a branched cover f ∶X → Y , a point y0 not in the branch locus, and
a labeling of the preimages 1, . . . , d, one can define a group homomorphism:

φf ∶ π1(Y ∖B,y0) → Sd
γ ↦ σγ ∶ {i↦ γ̃i(1)},

where γ̃i is the lift of γ starting at i (γ̃i(0) = i). This homomorphism is
called the monodromy representation, see Figure 1.2.

Remarks:
(1) A different choice of labelling of the preimages of y0 corresponds to

composing φf with an inner automorphism of Sd.
(2) If ρ ∈ π1(Y ∖ B,y0) is a little loop winding once around a branch

point with profile η, then σρ is a permutation of cycle type η.
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Viceversa, the monodromy representation contains enough information
to recover the topological cover of Y ∖B, and therefore, by the Riemann ex-
istence theorem, the map of Riemann surfaces. To count covers we can count
instead (equivalence classes of) monodromy representations. This leads to
the second definition of Hurwitz numbers.

Definition 3.1 (Representation Theory). Let (Y, p1, . . . , pr, q1, . . . , qs)
be an (r+s)-marked smooth Riemann Surface of genus g, and η = (η1, . . . , ηs)
a vector of partitions of the integer d:

Hr
g→h,d(η) ∶=

∣{η-monodromy representations φη}∣
∣Sd∣

∏Autηi, (1)

where an η-monodromy representation is a group homomorphism

φη ∶ π1(Y ∖B,y0)→ Sd

such that:
● for ρqi a little loop winding around qi once, φη(ρqi) has cycle type ηi.
● for ρpi a little loop winding around pi once, φη(ρpi) is a transposition.
⋆ Im(φη) acts transitively on the set {1, . . . , d}.

Remarks:
(1) To count disconnected Hurwitz numbers remove condition ⋆.
(2) Dividing by d! accounts simultaneously for automorphisms of the

covers and the possible relabellings of the preimages of y0.
(3) ∏Autηi corresponds to condition ○ in Definition 1.1.

Exercise 5. Recompute the Hurwitz numbers in the previous two Ex-
ercises using Definition 3.1. Compute H4

1→0,3((3)) = 9, H4
0→0,3 = 4 and

H4,●
0→0,3 = 9/2.

Note that the more natural problem from this perspective is the count of
disconnected Hurwitz numbers, where the condition ⋆ is omitted.

4. The Class Algebra

One may further translate the Hurwitz enumeration problem to a mul-
tiplication problem in the class algebra of the symmetric group, and exploit
its semisimplicity to obtain closed formulas in terms of characters of the
symmetric groups (Burnside formulas). Here we briefly recall some of these
facts, and refer the reader to [CM16] for a more extensive, yet elementary
treatment.

Definition 4.1. The class algebra of Sd is the center of the group
ring,

ZC[Sd] = {x ∈ C[Sd]∣yx = xy for all y ∈ C[Sd]}.

Exercise 6. For λ ⊢ d (a partition of the positive integer d) denote by
Cλ ∈ C[Sd] the sum of all elements of cycle type λ.

(1) Show that Cλ consists of the sum of all permutations in a particular
conjugacy class.

(2) Prove that for any λ, Cλ ∈ ZC[Sd].
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(3) Show that the Cλ’s form a basis for ZC[Sd] as a vector space:

ZC[Sd] =⊕
λ⊢d
⟨Cλ⟩C.

Hint: For x ∈ ZC[Sd] we have σxσ−1 = x for any σ ∈ Sd ⊂ C[Sd].
Now consider the sum

∑
σ∈Sd

σxσ−1.

We denote the conjugacy class of the identity element and the corre-
sponding element in the class algebra by Ce = C(1,...,1) = e.

The conjugacy class basis is a natural basis for ZC[Sd]. However, there
is another basis, naturally indexed by the irreducible representations of Sd,
that has a very nice multiplicative structure.

Theorem 1.2 (Maschke). The class algebra ZC[Sd] is a semi-simple
algebra, i.e. there is a basis {eρ1 , . . . , eρn} (where the ρi’s are all irreducible
representations of Sd) of idempotent elements. This means:

eρi ⋅ eρj = {
eρi if eρi = eρj
0 otherwise (2)

Furthermore the following change of basis formulas hold

eρ =
dim ρ

d!
∑
λ

χρ(λ)Cλ Cλ = ∣Cλ∣∑
ρ

χρ(λ)
dim ρ

eρ (3)

where the summation index λ denotes all partitions λ of d, and the summa-
tion index ρ denotes all irreducible representations of Sd.

Example 4.2. The class algebra ZC[S3] is a three dimensional vector
space, with basis

Ce = e

C(2,1) = (12) + (13) + (23)
C(3) = (123) + (132)

The multiplication table of ZC[S3] is (generated bilinearly from)

Ce C(2,1) C(3)

Ce Ce C(2,1) C(3)

C(2,1) C(2,1) 3(Ce +C(3)) 2C(2,1)

C(3) C(3) 2C(2,1) 2Ce +C(3)
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We denote the vectors of the semisimple basis for ZC[Sd] by e1, e−1 and
eS (instead of eρ1 , etc.). The changes of basis from Theorem 1.2 are:

e1 = 1
6(Ce +C(2,1) +C(3))

e−1 = 1
6(Ce −C(2,1) +C(3))

eS = 1
3(2Ce −C(3))

Ce = e1 + e−1 + eS

C(2,1) = 3e1 − 3e−1

C(3) = 2e1 + 2e−1 − eS

(4)

We now translate the Hurwitz counting problem to a multiplication prob-
lem in the class algebra. We set the genus of the base curve to be 0 (and
leave the generalization to higher genus as an exercise). The fundamental
group of a punctured sphere is a free group, and a monodromy representation
is obtained by choosing elements in Sd that belong to specified conjugacy
classes. A concise way to express all possible such choices is given in the
following proposition.

Proposition 4.3. Let λ1, . . . λn be partitions of the integer d and for
every i denote by Cλi

∈ ZC[Sd] the basis element associated to the corre-
sponding conjugacy class, i.e. the sum of all elements in Sd of cycle type λi.
A disconnected, genus 0 Hurwitz number is given by

H●
h

d→0
(λ1, . . . , λn) =

∏Autλi
d!

[Ce]Cλn . . .Cλ2Cλ1 ,

where [Ce]Cλn . . .Cλ2Cλ1 denotes the coefficient of Ce = {e} after writing the
product Cλn . . .Cλ2Cλ1 as a linear combination of the basis elements Cλ ∈
ZC[Sd]. Note that the genus h of the cover curve is determined by the
Riemann-Hurwitz Formula.

Exercise 7. Understand Proposition 4.3 well enough that you would be
able to write a proof if needed.

Example 4.4. In ZC[S3] we have

C(3)C(3) = ((123) + (132))((123) + (132)) (5)
= (123)(132) + (132)(123) + (132)(132) + (123)(123) (6)
= 2e + (123) + (132) = 2Ce +C(3). (7)

Thus [Ce]C(3)C(3) = 2.
The Hurwitz number H

0
3→0
((3), (3)) = ((Aut(3))2/3!)[Ce]C(3) ⋅C(3) with

the product computed in ZC[S3]. The coefficient [Ce]C(3) ⋅C(3) is equal to
2, and hence H

0
3→0
((3), (3)) = 12 ⋅ 2/6 = 1/3.

Exercise 8. Revisit all the previously computed Hurwitz numbers as
multiplication problems in the class algebra.

Exercise 9. For a fixed positive integer d we define

K ∶= ∑
λ⊢d
∣ξ(λ)∣C2

λ ∈ ZC[Sd]. (8)
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S3 Ce C(2,1) C(3)
ρ1 1 1 1

ρ−1 1 −1 1

ρS 2 0 1

Table 1. The character table of S3.

The (Gothic) letter “k” is chosen from the German word kommutator: re-
call that the commutator of two elements σ1, σ2 ∈ Sd is [σ1, σ2] = σ−12 σ−11 σ2σ1.
One should think of K as a way to express the sum of all commutators in Sd
as an element in the class algebra ZC[Sd].

Prove the formula

H●
h

d→g
(λ1, . . . , λn) =

1

d!
[Ce]KgCλn . . .Cλ2Cλ1 , (9)

where the genus h of the cover curve is determined by the Riemann-Hurwitz
Formula.

5. Burnside Formula

Computing Hurwitz numbers is a multiplication problem in the class
algebra of the symmetric group, and the conjugacy class basis {Cλ} is well
suited to encode the ramification profiles imposed over the branch points.

Theorem 1.2 shows that ZC[Sd] is a semisimple algebra with a semisim-
ple basis naturally indexed by irreducible representations. By changing basis
we obtain a closed formula for Hurwitz numbers in terms of characters of
the irreducible representations of Sd.

Theorem 1.3 (Burnside Character Formula). Fix a positive integer d
and m partitions λi ⊢ d. Denote by ρ an irreducible representation of Sd, and
understand a summation over the index ρ to be ranging over all irreducible
representations. Then

H●
h

d→g
(λ1, . . . , λm) =∑

ρ

(dimρ

d!
)
2−2g m

∏
j=1

∣Cλj
∣χρ(λj)
dimρ

(10)

Remark 5.1. At first glance it might not be apparent why (10) repre-
sents an improvement over (9). Arguably, it is not: in mathematics when
we translate a problem we often just “shift” the complexity of the problem
around. In formula (9) we have simple inputs (the conjugacy class basis vec-
tors for ZC[Sd]), but we are multiplying vectors in a very high dimensional
algebra with a complicated multiplication table. In formula (10), the inputs
are more sophisticated (the characters of representations of Sd), but the mul-
tiplication is now an ordinary multiplication of real numbers. In other words
we have shifted the complexity from the operation to the inputs.

Exercise 10. Prove Theorem 1.3. This essentially comes down to per-
forming the change of basis from Maschke’s theorem twice.
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Example 5.2. Let us revisit the steps of the proof of Theorem 1.3
through the computation of H

1
3→0
((3), (2,1)4). In this case the condition

of a point with full ramification forces all covers to be connected, so H =H●.
Refer to Table 1 for the character table of S3 and the transformations from
the conjugacy class basis to the representation basis. We have

H
1
3→0
((3), (2,1)4) = 1

6
[Ce]C(3)C4

(2,1)

= 1

6
[Ce](2 ⋅ 34e1 + 2 ⋅ (−3)4e−1)

= 1

6
(2 ⋅ 3

4

6
+ 2 ⋅ 34

6
) = 9

Exercise 11. Compute the following Hurwitz numbers using the for-
mula from Theorem 1.3.

(1) H
2
3→0
((3), (2,1)6)

(2) H
5
3→0
((3)4, (2,1)6)

(3) H●
0
3→0
((2,1)4)

Now compute the general degree 3 disconnected Hurwitz number.

H●
3g−2+a+b 3→g

((3)a(2,1)2b).

5.1. Disconnected to Connected: the Hurwitz Potential. The
relationship between connected and disconnected Hurwitz numbers is sys-
tematized in the language of generating functions.

Definition 5.3. The Hurwitz Potential is a generating function for
Hurwitz numbers. We present it with a redundand set of variables, keeping
in mind that in almost all applications one makes a more efficient choice of
the appropriate variables to mantain:

H(pi,j , u, z, q) ∶=∑Hr
g→0,d(η) p1,η1 ⋅ . . . ⋅ ps,ηs

ur

r!
z1−gqd,

where:
● pi,j , for i and j varying among non-negative integers, index rami-

fication profiles. The first index i keeps track of the branch point,
the second of the profile. For a partition η the notation pi,η means
∏j pi,ηj/Aut(ηj).
● u is a variable for unmarked simple ramification. Division by r!

reflects the fact that these points are not marked.
● z indexes the genus of the cover (more precisely it indexes the euler

characteristic, which is additive under disjoint unions).
● q keeps track of degree.

Similarly one can define a disconnected Hurwitz potential H● encoding all
disconnected Hurwitz numbers.

Fact. The connected and disconnected potentials are related by expo-
nentiation:

1 +H● = eH (11)
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Exercise 12. Convince yourself of equation (11). To me, this is one of
those things that are absolutely mysterious until you stare at it long enough
that, all of a sudden, it becomes absolutely obvious...

Example 5.4. We have seen in Exercise 5 that H0,3 = 4. From repre-
sentation theory:

H●0,3 =
1

36
(2 ⋅ 34) = 9

2
= 4 + 1

2
Looking at the coefficient of u4zq3 in equation (11):

H●0,3
u4

4!
zq3 =H0,3

u4

4!
zq3 + 1

2!
2(H1,2

u4

4!
q2)(H0,1zq) .

Exercise 13. Check equation (11) in the cases ofH●−1,4,H
●
−1((2,1,1), (2,1,1))

and H●−1((2,1,1), (2,1,1), (2,1,1), (2,1,1). These Hurwitz numbers equal
3
4 ,3 and 12.

Remark 5.5. Unfortunately I don’t know of any particulary efficient
reference for this section. The book [Wil06] contains more information
that one might want to start with on generating functions; early papers of
various subsets of Goulden, Jackson and Vakil contain the definitions and
basic properties of the Hurwitz potential.





CHAPTER 2

Hurwitz Numbers and Tautological Maps

The goal of this chapter is to understand the relationship between Hur-
witz theory and intersection theory on appropriate moduli spaces. This type
of connection is a fundamental idea in enumerative geometry, so we begin
the chapter with a brief discussion about the role of moduli spaces in enu-
merative geometry that may be skipped by the more advanced readers.

1. Enumerative geometry and moduli spaces

Enumerative geometry is an ancient branch of mathematics that is con-
cerned with counting geometric objects that satisfy a certain number of geo-
metric conditions. A prototypical family of enumerative geometric questions
that plays a prominent role in Hannah’s course is:

Qd: how many rational curves of degree d pass through
3d − 1 points in general position in complex projective
plane?

An enumerative geometric question is well-posed if it has a well-defined,
finite, not trivially-zero answer. For the questions Qd, the answer is well-
defined because the points that a curve must be incident to are required to
be in general position. The answer is finite and nonzero because the amount
of constrains required is just right: in all of the Qd’s, if one asks for incidence
to more than 3d− 1 points, then there are no solutions; for fewer than 3d− 1
points, then there are infinitely many. These issues will be revisited later,
after some concrete experimentation aimed at increasing familiarity with
these problems.

The answer to questionQ1 is Euclid’s first postulate: there is one straight
line joining any two distinct points in the plane. The answer remains un-
changed in the context of complex projective geometry, albeit one has to
prove it. Rather than doing that, we analyse how to solve question Q2, how
many plane conics are incident to five points in general position?

A conic in projective plane is the zero set of a degree 2 homogeneous
polynomial in x, y, z:

C = {a0z2 + a1xz + a2yz + a3x2 + a4xy + a5y2 = 0}

The sextuple of complex numbers (a0, . . . , a5) identifies uniquely a conic in
the plane, and two sextuples give the same conic if and only if they are
proportional. In other words, there is a bijection

{ sextuples
(a0, . . . , a5) }/ ∼ ↪ { conics in

the plane } ,

17
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where ∼ denotes the equivalence relation

(a0, . . . , a5) ∼ (λa0, . . . , λa5),
for any λ /= 0. Passing through a point corresponds to satisfying a linear
equation in the variables (a0, . . . , a5).

The answer to Q2 therefore is obtained by solving a homogeneous lin-
ear system of five equations in six variables. If the rank of the corresponding
matrix is 5 (which is the algebraic translation of the points being in general
position) then there is exactly a one parameter homogenous family of so-
lutions, i.e. one conic. The algebraic procedure in the previous paragraph
admits a geometric interpretation: one recognizes the equivalence classes
of sextuples as homogeneous coordinates for 5-dimensional projective space;
calling P5 the moduli space of conics implies in particular that its points are
in bijection with the set of plane conics. The set of conics passing through
one given point defines a hyperplane; five general hyperplanes in P5 intersect
in exactly one point.

This suggests a general geometric strategy to approach an enumerative
question:

(1) Understand the moduli space of the class of geometric objects that
the solutions to the question belong to.

(2) Identify the geometric conditions that need to be satisfied as sub-
varieties of the moduli space.

(3) Intersect the above subvarieties to impose multiple, simultaneous
constrains.

Thus an enumerative question becomes a problem in intersection theory
on moduli spaces.

Even with this powerful perspective, many technical difficulties still stand
in the way of solving most enumerative geometric questions; for example, the
method outlined for Q2, consisting of obtaining the solutions as intersection
of subvarieties in the projective space of all degree d plane, projective curves
has been successfully carried out only for d ≤ 4. The general solution to Qd

([Kon95]) required a change in point of view: instead of thinking of curves
as subvarieties of the projective plane, Kontsevich thinks of them as maps
from an abstract curve into the projective plane; the moduli spaces thus
obtained have formal properties that allow to produce a recursive formula
answering Qd for all d. An excellent expository treatment of Kontsevich’s
solution appears in [KV07]; Hannah’s course is dedicated to the parallel
argument in tropical geometry.

For now, the main takeaways from this section should be that mathe-
maticians that are interested in enumerative geometric questions should care
about moduli spaces; and that a key aspect to be able to solve any given
enumerative geometric question is identifying the right moduli space for the
problem.

2. First example: projective spaces

We assume some familiarity with the notion of n-dimensional projective
space Pn as a moduli space, i.e. as endowing some desirable geometric struc-
ture to the set of one dimensional linear subspaces of an (n+1)-dimensional
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vector space V . This section highlights some aspects of the familiar geometry
of projective spaces that are at the base of later generalizations.

There exists a line bundle π ∶ OPn(−1) ⊂ Pn × V → Pn with the following
two remarkable properties:

(1) The fiber π−1([L]) ⊂ {[L]} × V = V over a point [L] representing a
linear subspace L is the subspace L itself.

(2) Given any space X and any line bundle p ∶ L ⊂ X × V → X, there
is a natural map fp ∶ X → Pn defined by x ↦ [p−1(x)], and L is
isomorphic to the fiber product X ×Pn OPn(−1).

Because of these properties, OPn(−1) is called the tautological bundle, or the
universal family for the moduli space Pn.

Next, we introduce the additional structure of a choice of a basis for
V , and correspondingly a system of dual coordinates Z0, . . . , Zn yielding a
linear isomorphism V ≅ Cn+1. The space Pn may be given the more concrete
reinterpretation of being the moduli space of lines through the origin in
Cn+1; the linear coordinates on V give a system of homogeneous coordinates
(Z0 ∶ . . . ∶ Zn) for Pn, in the sense that a point [L] ∈ Pn is identified with an
equivalence class of tuples (Z0(P ) ∶ . . . ∶ Zn(P )), where P may be any point
in L and two equivalent tuples differ by simultaneous rescaling by a non-
zero constant. More importantly, Pn becomes endowed with the following
geometric structure, which is at the heart of our discussion.

The vector space Cn+1 has a set of distinguished hyperplanes which we
consider special, namely the coordinate hyperplanes Hi = {Zi = 0}. Corre-
spondingly, we partition the set of lines into those in general position, i.e.
not contained in any coordinate hyperplane, and those in special position,
which are contained in some Hi. The set of lines in general position forms
an open dense set of Pn, called the interior of the moduli space, whereas
the lines in special position form a closed set called the boundary. Before
continuing to discuss the structure of the boundary of Pn we reiterate that
the notions of interior and boundary are not intrinsic to the geometry of
projective space, but rather follow from the deliberate choice of selecting a
hyperplane arrangement in V to play a special role.

The boundary of Pn is the union of (n + 1) irreducible divisors Di, pa-
rameterizing lines contained in the hyperplane Hi. Every Di is isomorphic to
Pn−1 and it comes with a tautological inclusion morphism ιi ∶ Pn−1 ≅Di → Pn,
which inserts a 0 among the homogeneous coordinates of points of Pn−1 so
it takes the i-th position.

While the union of the distinguished divisors Di covers all of the bound-
ary, there is more combinatorial structure that can be unearthed. Having
already separated lines into general and special, we next adopt the philosophy
that not all special lines are equally special: a line is progressively more spe-
cial if it is simultaneously contained in multiple coordinate hyperplanes. One
thus obtains an equivalence relation on the set of lines, stipulating two lines
are equivalent if they are contained in the same coordinate hyperplanes, a
corresponding stratification of Pn by equivalence classes and a ranked poset
structure on the quotient set. The minimal elements, which are called of
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(1 ∶ 0 ∶ 0)
(0 ∶ 1 ∶ 0)

(0 ∶ 0 ∶ 1)

Z2 = 0

Z1 = 0 Z0 = 0

general lines

i.e. interior

Figure 2.1. The boundary complex of P2 is a standard 2-simplex.

rank 0, are lines contained in the intersection of n distinct coordinate hyper-
planes, and the unique maximal element (of rank n) is the equivalence class
corresponding to the interior of Pn.

The closure of an equivalence class of lines contained in exactly k coor-
dinate hyperplanes is called a boundary stratum of codimension k, and it is
isomorphic to Pn−k. Hence the boundary of n-dimensional projective space
is assembled out of smaller dimensional projective spaces via appropriate
inclusion morphisms.

All this combinatorial information is efficiently encoded in the boundary
complex of projective space, the simplicial complex associated to the ranked
poset structure of the boundary. The boundary complex of projective space
Pn is the standard n-dimensional simplex, as illustrated in Figure 2.1.

The last observation is that Pn, together with all the additional struc-
tured we chose, is an example of a toric variety. The interior of Pn is
(C∗)n+1/C∗, which is (non-canonically) isomorphic to an n-dimensional torus
(C∗)n. Such torus acts on Pn and the boundary stratification discussed ear-
lier is precisely the stratification given by orbits of the torus action. The
n-dimensional simplex is the polytope of the toric variety Pn.

Regardless of the level of comfort of the reader with toric varieties, the
goal of this section has been to highlight that much of the combinatorial toric
structure of projective space can be traced to the modular interpretation of
Pn as a moduli space of one dimensional linear subspaces of a vector space
V , after the choice of a basis. Dhruv’s mini-course is taking off from toric
varities to generalize in the direction of logarithmic geometry.

3. Hurwitz numbers and moduli spaces

We take now a gigantic step in sophistication and quickly introduce some
families of moduli spaces that are related to Hurwitz theory. For the stu-
dents that are not so familiar with moduli spaces, try to get a qualitative
understanding of these examples via analogy with the previous section.
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Mg,n: the moduli space of (isomorphism classes of) stable curves
of genus g with n marked points. Stability means that every ra-
tional component must have at least three special points (nodes or
marks), and that a smooth genus one curve needs to have at least
one mark. Mg,n is a smooth stack of dimension 3g−3+n, connected,
irreducible. See [HM98] for more.

Mg,n(α1, . . . , αn): in weighted stable curves ([Has03]) one tweaks
the stability of a pointed curve (X = ∪jXj , p1, . . . , pn) by assigning
weights αi to the marked points and requiring the restriction to each
Xj of ωX +∑αipi to be ample (this amounts to the combinatorial
condition that ∑pi∈Xj

αi + nj > 2 − 2gj , where nj is the number of
shadows of nodes on the j-th component of the normalization of X
and gj is the geometric genus of such component). In these spaces
“light” points can collide with each other until a “critical mass” is
reached that forces the sprouting of new components.
When g = 0, two points are given weight 1 and all other points very
small weight, the space M0,2+r(1,1, ε, . . . , ε) is classically known as
the Losev-Manin space [LM00]: it parameterizes chains of P1’s
with the heavy points on the two external components and light
points (possibly overlapping amongst themselves) in the smooth
locus of the chain. An especially nice feature of Losev-Manin spaces
is that they are toric varieties.

Mg,n(X,β): the space of stable maps to X of degree β ∈H2(X). A
map is stable if every contracted rational component has three spe-
cial points. If g = 0 and X is convex then these are smooth schemes,
but in general these are nasty creatures even as stacks. They are
singular and typically non-equidimensional. Luckily deformation
theory experts can construct a Chow class, called virtual funda-
mental class, of degree in the expected dimension, and enjoying
many of the formal properties of the fundamental class. Intersection
theory on these spaces is then rescued by capping with the virtual
fundamental class. Good references for people interested in these
spaces are [HKK+03a], [KV07] and [FP97].

Hurwg→h,d(η) ⊂ Admg→h,d(η): the Hurwitz spaces parameterize de-
gree d covers of smooth curves of genus h by smooth curves of genus
g. A vector of partitions of d specifies the ramification profiles over
marked points on the base. All other ramification is required to
be simple. Hurwitz spaces are typically smooth schemes (unless
the ramification profiles are chosen in very particular ways so as to
allow automorphisms), but they are obviously non compact. The
admissible cover compactification, consisting of degenerating si-
multaneosly target and cover curves, was introduced in [HM82]. In
[ACV01], the normalization of such space is interpreted as a (com-
ponent of a) space of stable maps to the stack BSd. Without going
into the subtleties of stable maps to a stack, we understand that by
admissible cover we always denote the corresponding smooth stack.

Mg,n(X,β;αD): spaces of relative stable maps relative to a divi-
sor D with prescribed tangency conditions([LR01, Li02a]). We
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are especially interested in the case when X is itself a curve. In this
case giving relative conditions is equivalent to specifying ramifica-
tion profiles over some marked points of the target: spaces of rela-
tive stable maps are a “hybrid” compactification that behaves like
admissible covers over the relative points and as stable maps else-
where. See [Vak08] for a more detailed description of the boundary
degenerations.

Remark 3.1. When the target space is P1, an important variation of
spaces of (relative) stable maps is the so called space of rubber maps, or
maps to an unparameterized P1, where two maps are considered equivalent
when they agree up to an automorphism of the base P1 preserving 0 and ∞
(in other words a C∗ scaling of the base). It will be clear later why we care
about these spaces.

Exercise 14. Describe the moduli space Mg(P1,1) and the stable maps
compactification Mg(P1,1).

Exercise 15. The hyperelliptic locus is the subspace of Mg parame-
terizing curves that admit a double cover to P1. Understand the hyperelliptic
locus as the moduli space Admg→0,2((2), . . . , (2)) and subsequently as a stack
quotient ofM0,2g+2 by the trivial action of Z2.

There are important morphism connecting these types of moduli spaces.
If we denote by Cov (some compactification of) the Hurwitz space of covers
of P1 (by admissible covers, stable maps, relative stable maps, ...), we have
a natural diagram:

Cov
s //

br
��

Mg,n

Tar

(12)

where Tar denotes a moduli space of branch divisors on the target of the
cover, and br the branch morphism that assigns to each cover f ∶ C → P1 its
branch divisor.

Fact (Important). The Hurwitz number equals the degree of the branch
morphism.

Exercise 16. Understand how Tar depends on the choice of Cov. In
particular, figure out what it is when Cov equals the Hurwitz space, the ad-
missible cover compactification, the stable maps compactification, the com-
pactification by relative stable maps.

3.1. Tautological Bundles on Moduli Spaces. We define bundles
on moduli spaces by describing them in terms of the geometry of families
of objects. In other words, for any family X → B, we give a bundle on B
constructed in some canonical way from the family X. This insures that
this assignment is compatible with pullbacks (morally means that we are
thinking of B as a chart and that the bundle patches along various charts).
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3.1.1. The Cotangent Line Bundle and ψ classes. An excellent reference
for this section, albeit unfinished and unpublished, is [Koc01].

Definition 3.2. The i-th cotangent line bundle Li →Mg,n is glob-
ally defined as the restriction to the i-th section of the relative dualizing
sheaf from the universal family:

Li ∶= σ∗i (ωπ).
The first Chern class of the cotangent line bundle is called ψ class:

ψi ∶= c1(Li).

This definition is slick but unenlightening, so let us chew on it a bit.
Given a family of marked curves f ∶X → B(= φf ∶ B →Mg,n), the cotangent
spaces of the fibers Xb at the i-th mark naturally fit together to define a line
bundle on the image of the i-th section, which is then isomorphic to the base
B. This line bundle is the pullback φ∗f(Li). Therefore informally one says
that the cotangent line bundle is the line bundle whose fiber over a moduli
point is the cotangent line of the parameterized curve at the i-th mark.

The cotangent line bundle arises naturally when studying the geometry
of the moduli spaces, as we quickly explore in the following exercises.

Exercise 17. Convince yourself that the normal bundle to the image of
the i-th section in the universal family is naturally isomorphic to L∨i (This
is sometimes called the i-th tangent line bundle and denoted Ti).

Exercise 18. Consider an irreducible boundary divisor D ≅Mg1,n1+● ×
Mg2,n2+⋆. Then the normal bundle of D in the moduli space is naturally iso-
morphic to the tensor product of the tangent line bundles of the components
at the shadows of the node:

ND/Mg,n
≅ L∨● ⊠ L∨⋆

Is this statement consistent with the previous exercise? Why?

When two moduli spaces admitting ψ classes are related by natural mor-
phisms, a natural question to ask is how the corresponding ψ classes compare
(more precisely, how a ψ class in one space compares with the pull-back via
the natural morphism of the corresponding ψ class on the other space). The
answer is provided by the following Lemma.

Lemma 2.1. The following comparisons of ψ classes hold.
(1) Let πn+1 ∶Mg,n+1 →Mg,n be the natural forgetful morphism, and

i /= n + 1. Then

ψi = π∗n+1ψi +Di,n+1,

where Di,n+1 is the boundary divisor parameterizing curves where
the i-th and the (n+1)-th mark are the only two marks on a rational
tail (or the image of the i-th section, if you think of Mg,n+1 as the
universal family of Mg,n).

(2) Let π ∶Mg,1(X,β)→Mg,1 be the natural forgetful morphism. Then

ψ1 = π∗ψ1 +D1,
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where D1 is the divisor of maps where the mark lies on a contracting
rational tail.

(3) Let r ∶Mg,n(α1, . . . , αn) →Mg,n(α′1, . . . , α′n) be the natural reduc-
tion morphism. Then

ψi = r∗ψi +D,
where D is the boundary divisor parameterizing curves where the i-
th mark lies on a component that is contracted inMg,n(α′1, . . . , α′n).

In all cases the intuitive idea is that the “difference” in the cotangent line
bundles is supported on the locus where the mark lives on a curve in the
first space that gets contracted in the second space. To make a formal proof
one has to observe how the universal family of the first space is obtained by
appropriately blowing up the pull-back of the universal family on the second
space, and what effect that has on the normal bundle to a section.

Exercise 19. Show that Lemma 2.1 gives sufficient information to de-
termine ψ classes for every M0,n. In particular show it gives the following
useful combinatorial boundary description of a ψ class. Let i, j, k be three
distinct marks. The class ψi is the sum of all boundary divisors parameteriz-
ing curves where the i-th mark is on one component, the j-th and k-th marks
are on the other. Note that such a boundary description is not unique, as it
depends on the choice of j and k.

3.1.2. The Hodge Bundle.

Definition 3.3. The Hodge bundle E(= Eg,n) is a rank g bundle on
Mg,n, defined as the pushforward of the relative dualizing sheaf from the
universal family. Over a curve X, the fiber is canonically H0(X,ωX) (i.e.
the vector space of holomorphic 1-forms if X is smooth). The Chern classes
of E are called λ classes:

λi ∶= ci(E).
We recall the following properties([Mum83]):

Mumford Relation: the total Chern class of the sum of the Hodge
bundle with its dual is trivial:

c(E⊕ E∨) = 1. (13)

Hence ch2i = 0 if i > 0.
Separating nodes:

ι∗g1,g2,S(E) ≅ Eg1,n1 ⊞ Eg2,n2 , (14)

where with abuse of notation we omit pulling back via the projection
maps fromMg1,n1+1 ×Mg2,n2+1 onto the factors.

Non-separating nodes:

ι∗irr(E) ≅ Eg−1,n ⊞O. (15)

Remark 3.4. We define the Hodge bundle and λ classes on moduli spaces
of stable maps and Hurwitz spaces by pulling back via the appropriate for-
getful morphisms.

Exercise 20. Use the above properties to show vanishing properties of
λ-classes:
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(1) λ2g = 0 if g > 0.
(2) λgλg−1 vanishes on the boundary of Mg. If now we allow marked

points, then the vanishing holds on “almost all” the boundary, but
one needs to be more careful. Describe the vanishing locus of λgλg−1
in this case.

(3) λg vanishes on the locus of curves not of compact type (i.e. where
the geometric and arithmetic genera are different).

4. Simple Hurwitz Numbers and the ELSV Formula

The name simple Hurwitz number (denoted Hg(η)) is reserved for
Hurwitz numbers to a base curve of genus 0, and with only one special point
where arbitrary ramification is assigned. In this case the number of simple
ramification, determined by the Riemann-Hurwitz formula, is

r = 2g + d − 2 + ℓ(η). (16)

Definition 3.1 simplifies further to count (up to an appropriate multi-
plicative factor) the number of ways to factor a (fixed) permutation σ ∈ Cη

into r transpositions that generate Sd:

Hg(η) =
1

∏ηi
∣{(τ1, . . . , τr s.t. τ1 ⋅ . . . ⋅ τr = σ ∈ Cη, ⟨τ1, . . . , τr⟩ = Sd)}∣ (17)

Exercise 21. Prove that (17) is indeed equivalent to Definition 3.1.
The first formula for simple Hurwitz numbers was given and “sort of”

proved by Hurwitz in 1891 ([Hur91]):

H0(η)
Autη

= r!dℓ(η)−3∏
ηη

i

i

ηi!
.

Particular cases of this formula were proved throughout the last century,
and finally the formula became a theorem in 1997 ([GJ97]). In studying the
problem for higher genus, Goulden and Jackson made the following conjec-
ture.

Conjecture (Goulden-Jackson polynomiality conjecture). For any fixed
values of g, n ∶= ℓ(η):

Hg(η)
Autη

= r!∏
ηη

i

i

ηi!
Pg,n(η1 . . . , ηn), (18)

where Pg,n is a symmetric polynomial in the ηi’s with:
● deg Pg,n = 3g − 3 + n;
● Pg,n doesn’t have any term of degree less than 2g − 3 + n;
● the sign of the coefficient of a monomial of degree d is (−1)d−(3g+n−3).

In [ELSV01] Ekehdal, Lando, Shapiro and Vainshtein prove this formula
by establishing a remarkable connection between simple Hurwitz numbers
and tautological intersections on the moduli space of curves.

Theorem 2.1 (ELSV formula). For all values of g, n = ℓ(η) for which
the moduli space Mg,n exists:

Hg(η)
Autη

= r!∏
ηη

i

i

ηi!
∫Mg,n

1 − λ1 + . . . + (−1)gλg
∏(1 − ηiψi)

, (19)
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Remark 4.1. Goulden and Jackson’s polynomiality conjecture is proved
by showing the coefficients of Pg,n as tautological intersection numbers on
Mg,n. Using standard multi-index notation:

Pg,n =
g

∑
k=0

∑
∣Ik ∣=3g−3+n−k

(−1)k (∫ λkψ
Ik)ηIk

Remark 4.2. The polynomial Pg,n is a generating function for all linear
(meaning where each monomial has only one λ class) Hodge integrals on
Mg,n, and hence a good understanding of this polynomial can yield results
about intersection theory on the moduli spaces of curves. In fact the ELSV
formula has given rise to several remarkable applications:

[OP09]: Okounkov and Pandharipande use the ELSV formula to give
a proof of Witten’s conjecture, that an appropriate generating func-
tion for the ψ intersections satisfies the KdV hierarchy. The ψ inter-
sections are the coefficients of the leading terms of Pg,n, and hence
can be reached by studying the asymptotics of Hurwitz numbers:

lim
N→∞

Pg,n(Nη)
N3g−3+n

[GJV06]: Goulden, Jackson and Vakil get a handle on the lowest
order terms of Pg,n to give a new proof of the λg conjecture:

∫Mg,n

λgψ
I = (2g − 3 + n

I
)∫Mg,1

λgψ
2g−2
1

We sketch a proof of the ELSV formula following [GV03]. The strategy
is to evaluate an integral via localization, choosing an appropriate represen-
tative for the equivariant cohomology class in question in order to obtain the
desired result.

Denote:
M ∶=Mg(P1, η∞)

the moduli space of relative stable maps of degree d to P1, with profile
η over ∞. The degenerations included to compactify are twofold:

● away from the preimages of ∞ we have degenerations of “stable
maps” type: we can have nodes and contracting components for
the source curve, and nothing happens to the target P1;
● when things collide at ∞, then the degeneration is of “admissible

cover” type: a new rational component sprouts from ∞ ∈ P1, the
special point carrying the profile requirement transfers to this com-
ponent. Over the node we have nodes for the source curve, with
maps satisfying the kissing condition.

The spaceM has virtual dimension r = 2g+d+ℓ(η)−2 and admits a globally
defined branch morphism ([FP02]):

br ∶M→ Symr(P1) ≅ Pr.

The simple Hurwitz number:

Hg(η) = deg(br) = br∗(pt.) ∩ [M]vir

can now interpreted as an intersection number on a moduli space with a
torus action and evaluated via localization. The map br can be made C∗
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Figure 2.2. the unique contributing fixed locus in the local-
ization computation proving the ELSV formula.

equivariant by inducing the appropriate action on Pr. The key point is
now to choose the appropriate equivariant lift of the class of a point in Pr.
Recalling that choosing a point in Pr is equivalent to fixing a branch divisor,
we choose the C∗ fixed point corresponding to stacking all ramification over
0. Then there is a unique fixed locus contributing to the localization formula,
depicted in Figure 2.2, which is essentially isomorphic toMg,n (up to some
automorphism factors coming from the bubbles over P1).

The ELSV formula falls immediately out of the localization formula.
The virtual normal bundle to the unique contributing fixed locus has a de-
nominator part given from the smoothing of the nodes that produces the
denominator with ψ classes in the ELSV formula. Then there is the equi-
variant euler class of the derived push-pull of TP1(−∞): when restricted to
the fixed locus this gives a Hodge bundle linearized with weight 1, produc-
ing the polynomial in λ classes, and a bunch of trivial but not equivariantly
trivial bundles corresponding to the restriction of the push-pull to the trivial
covers of the main components. The equivariant euler class of such bun-
dles is just the product of the corresponding weights, and gives rise to the
combinatorial pre-factors before the Hodge integral.

Remark 4.3. An abelian orbifold version of the ELSV formula has been
developed by Johnson, Pandharipande and Tseng in [JPT11]. In this case
the connection is made between Hurwitz-Hodge integrals and wreath Hur-
witz numbers.
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5. Appendix: Atyiah-Bott Localization

This section is meant as a friendly introduction to localization for people
that may not have encountered it before. It does not contain sufficient infor-
mation for a person to be able to use this technique, but the intention is that
it may make the references that do (e.g. [HKK+03b]) become significantly
more approachable.

The localization theorem of [AB84] is a powerful tool for the intersection
theory of moduli spaces that can be endowed with a torus action.

5.1. Equivariant Cohomology. Let G be a group acting on a space
X. According to your point of view G might be a compact Lie group or a
reductive algebraic group. Then G-equivariant cohomology is a cohomology
theory developed to generalize the notion of the cohomology of a quotient
when the action of the group is not free. The idea is simple: since cohomology
is homotopy invariant, replaceX by a homotopy equivalent space X̃ on which
G acts freely, and then take the cohomology of X̃/G. Rather than delving
into the definitions that can be found in [HKK+03b], Chapter 4, we recall
here some fundamental properties that we use:

(1) If G acts freely on X, then

H∗G(X) =H∗(X/G).
(2) If X is a point, then let EG be any contractible space on which G

acts freely, BG ∶= EG/G, and define:

H∗G(pt.) =H∗(BG).
(3) If G acts trivially on X, then

H∗G(X) =H∗(X)⊗H∗(BG).
Example 5.1. If G = C∗, then EG = S∞, BG ∶= P∞ and

H∗C∗(pt.) = C[h̵],
with h̵ = c1(O(1)).

Remark 5.2. Dealing with infinite dimensional spaces in algebraic ge-
ometry is iffy. In [Ful98], Fulton finds an elegant way out by showing that
for any particular degree of cohomology one is interested in, one can work
with a finite dimensional approximation of BG. Another route is to instead
work with the stack BG = [pt./G]. Of course the price to pay is having
to formalize cohomology on stacks...here let us just say that O(1) → BC∗,
pulled back to the class of a point, is a copy of the identity representation
Id ∶ C∗ → C∗.

Let C∗ act on X and let Fi be the irreducible components of the fixed
locus. If we-push forward and then pull-back the fundamental class of Fi we
obtain

i∗i∗(Fi) = e(NFi/X).
Since NFi/X is the moving part of the tangent bundle to Fi, this euler class
is a polynomial in h̵ where the h̵codim(Fi) term has non-zero coefficient. This
means that if we allow ourselves to invert h̵, this euler class becomes invert-
ible. This observation is pretty much the key to the following theorem:
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Theorem 2.2 (Atyiah-Bott localization). The maps:

⊕
i

H∗(Fi)(h̵)
∑ i∗

e(Ni)→ H∗C∗(X)⊗C(h̵) i∗→⊕
i

H∗(Fi)(h̵)

are inverses (as C(h̵)-algebra homomorphisms) of each other. In particular,
since the constant map to a point factors (equivariantly!) through the fixed
loci, for any equivariant cohomology class α:

∫
X
α =∑

i
∫
Fi

i∗(α)
e(NFi/X)

In practice, one can reduce the problem of integrating classes on a space
X, which might be geometrically complicated, to integrating over the fixed
loci (which are hopefully simpler).

Example 5.3 (The case of P1). Let C∗ act on a two dimensional vector
space V by:

t ⋅ (v0, v1) ∶= (v0, tv1)
This action defines an action on the projectivization P(V ) = P1. The fixed
points for the torus action are 0 = (1 ∶ 0) and ∞ = (0 ∶ 1). The canonical
action on TP has weights +1 at 0 and −1 at∞. Identifying V −0 with the total
space of OP1(−1) minus the zero section, we get a canonical lift of the torus
action to OP1(−1), with weights 0,1. Also, since OP1(1) = OP1(−1)∨, we get
a natural linearization for OP1(1) as well (with weights 0,−1). Finally, by
thinking of P1 as the projectivization of an equivariant bundle over a point,
we obtain:

H∗C∗(P1) = C[H, h̵]
H(H − h̵) .

The Atyiah-Bott isomorphism now reads:

C(h̵)0 ⊕C(h̵)∞ ↔ H∗C∗(P)⊗C(h̵)
(1,0) → H

h̵

(0,1) → H−h̵
−h̵

(1,1) ← 1
(h̵,0) ← H

5.1.1. Applying the Localization Theorem to Spaces of Maps. Kontsevich
first applied the localization theorem to smooth moduli spaces of maps in
[Kon95]. Graber and Pandharipande ([GP99]) generalized this technique
to the general case of singular moduli spaces, showing that localization “plays
well” with the virtual fundamental class.

Let X be a space with a C∗ action, admitting a finite number of fixed
points Pi, and of fixed lines li (NOT pointwise fixed). Typical examples are
given by projective spaces, flag varieties, toric varieties... Then:

(1) A C∗ action is naturally induced on Mg,n(X,β) by postcomposi-
tion.

(2) The fixed loci inMg,n(X,β) parameterize maps from nodal curves
to the target such that:
● components of arbitrary genus are contracted to the fixed points
Pi.
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● rational components are mapped to the fixed lines as d-fold
covers fully ramified over the fixed points.

In particular

Fi ≅∏Mgj ,nj ×∏BZdk .

(3) The “virtual” normal directions to the fixed loci correspond essen-
tially to either smoothing the nodes of the source curve (which by
exercise 18 produces sums of ψ classes and equivariant weights), or
to deforming the map out of the fixed points and lines. This can
be computed using the deformation exact sequence ([HKK+03b],
(24.2)), and produces a combination of equivariant weights and λ
classes.

The punchline is, one has reduced the tautological intersection theory
of Mg,n(X,β) to combinatorics, and Hodge integrals (i.e. intersection the-
ory of λ and ψ classes). From a combinatorial point of view this can be
an extremely complicated and often unmanageable problem, but in princi-
ple application of the Grothendieck-Riemann-Roch Theorem and of Witten
Conjecture/Kontsevich’s Theorem completely determine all Hodge integrals.
Carel Faber in [Fab99] explained this strategy and wrote a Maple code
that can handle efficiently integrals up to a certain genus and number of
marks. Vice-versa, one could also argue that simple Hurwitz numbers are
computable using character theory of the symmetric group, and hence the
ELSV formula gives a way to access linear Hodge integrals that avoids the
sophistication of GRR and Witten.



CHAPTER 3

Tropical Hurwitz Numbers

In this Chapter we make a connection between Hurwitz theory and trop-
ical geometry. First, we describe a particular class of Hurwitz numbers
(double Hurwitz numbers) that are well suited for this correspondence. We
construct a tropical enumerative problem analogous to the Hurwitz counting
problem, and frame it as the degree of a map of moduli spaces. This in turn
produces a combinatorial algorithm for computing Hurwitz numbers which
unveils interesting structure for families of double Hurwitz numbers.

1. Double Hurwitz Numbers

Double Hurwitz numbers count covers of P1 with special ramification
profiles over two points, that for simplicity we assume to be 0 and∞. Double
Hurwitz numbers are denoted Hr

g(x), for x ∈H ⊂ Rn an integer lattice point
on the hyperplane ∑xi = 0. The subset of positive coordinates corresponds
to the profile over 0 and the negative coordinates to the profile over ∞. We
define x0 ∶= {xi > 0} and x∞ ∶= {xi < 0}.

The number r of simple ramification is given by the Riemann-Hurwitz
formula,

r = 2g − 2 + n
and it is independent of the degree d. In [GJV03], Goulden, Jackson and
Vakil start a systematic study of double Hurwitz numbers and in particular
invite us to consider them as a function:

Hr
g(−) ∶ Zn ∩H → Q. (20)

They prove a remarkable combinatorial property of this function:

Theorem 3.1 ([GJV03]). The function Hr
g(−) is a piecewise polynomial

function of degree 4g − 3 + n.

And conjecture some more:

Conjecture ([GJV03]). The polynomials describing Hr
g(−) have de-

gree 4g − 3 + n, lower degree bounded by 2g − 3 + n and are even or odd
polynomials (depending on the parity of the leading coefficient).

Shadrin, Shapiro and Vainshtein [SSV08] describe the chambers of poly-
nomiality and give wall-crossing formulas for double Hurwitz numbers in
genus 0. Their results are generalized to arbitrary genus in [CJM11]. Trop-
ical geometry gives an approach to the study of double Hurwitz numbers
that shows the conceptual reason for these combinatorial structure results.

31
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5 4

1

3

2
1

Figure 3.1. A tropical cover of genus 1 and degree
(5,−2,−3), with its minimal vertex set. We do not specify
length data in this picture, as the lengths in Γ are imposed
by the distances of the points in P1

trop. All vertices are sup-
posed to be of genus 0. For simplicity, we also suppress the
labels for the ends in this picture.

2. Moduli spaces of tropical covers

Recall from Hannah’s course that an abstract tropical curve Γ is but a
fancy name for a metric graph. In Hannah’s course the focus is on rational
tropical curves, i.e. trees. To make a tropical curve of higher genus, we both
allow non-contractible graphs and we endow the vertices of the graph with
a genus function g. A metric graph Γ is then a tropical curve of genus g if

∑
v∈V (Γ)

g(v) + b1(Γ) = g,

where b1 stands for first Betti number.

Definition 2.1. Let g be a non-negative integer and x = (x1, . . . xn) ∈
(Z∖{0})n a vector of non-zero integers adding up to 0. A tropical cover of
(the line model of) tropical P1

trop of type (g,x) is a pair (Γ, φ), where Γ is an
abstract tropical curve of genus g, and φ ∶ Γ → R is a harmonic morphism,
i.e. φ is a continuous functions that restricts to an affine linear function
with integer slope on every edge and such that at every vertex the sum of
all outgoing edge slopes equals 0. Further, Γ has n-unbounded labeled edges
(called ends), and when one orients all ends inward the local slopes of φ are
given by the entries of x.

An example of a tropical cover is illustrated in Figure 3.1.
Two tropical covers from the same source curve (Γ, φ1), (Γ, φ2) are called

isomorphic if there exists a translation t ∶ R → R such that t ○ φ1 = φ2.
Intuitively, one may think that a tropical cover is defined up to a global
translation of the base line.

Similarly to what happens for rational tropical curves, the collection of
all tropical covers of type (g,x) may be parameterized by a cone complex
called M trop

g (P1
trop,x), the moduli space of tropical covers of genus g and

degree x. Cones of this complex correspond to toplogical types of tropical
covers, and faces of cones naturally correspond to covers where some of the
edge lengths are shrunk to 0.

Remark 2.2. There is a subtlety in the definition of tropical covers which
we are happily shoving under the rug: should one allow φ to have 0 slope
for some internal egde of Γ, i.e. to contract some subgraph of Γ? Depending
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on the answer, one obtains two different cone complexes. For the purposes
of defining tropical Hurwitz numbers, both variants work equally well.

Exercise 22. Describe the moduli space of tropical covers of type (1, (d,−d)).
What is the difference between the two variants described in Remark 2.2?

If one does not allow any contracting subgraph, the dimension of the
moduli space M trop

g (P1
trop,x) is 2g − 3 + n. If one does allow contracting

subgraphs, then we say that 2g − 3 + n is the expected dimension of the
space M trop

g (P1
trop,x). One should consider covers contracting subgraphs as

somewhat degenerate objects, and this is reflected by the fact that cones
parameterizing these topological types might have dimension that exceeds
the expected dimension.

Exercise 23. Describe the combinatorial types of graphs corresponding
to cones of the expected dimension in M trop

g (P1
trop,x).

There is a natural branch morphism

br ∶M trop
g (P1

trop,x)→ Rr−1
≥0 , (21)

and the tropical double Hurwitz number is defined to be its degree.

Definition 2.3.

Htrop
g (x) = deg(br ∶M trop

g (P1
trop,x)→ Im(br) ⊆ Rr−1

≥0 ).

Exercise 24. In reality, the branch morphism is only natural if you have
spent enough time playing around with these kinds of moduli spaces. Let us
become more familiar with the branch morphism in this exercise:

(1) Consider cones parameterizing covers of the expected dimension
with no contracted subgraphs: pick a representative such that the
image of the leftmost vertex of the graph maps to 0; define a natural
function taking values in Rr−1.

(2) Generalize the function from the previous step to cones parameter-
izing any covers with no contracting subgraphs by continuity (i.e.
by viewing such covers as limits of covers from cones of the expected
dimension).

(3) Generalize the function from the previous steps to all cones by
“flatness” (i.e. by assuming that the total number of “ramification
points” of a cover should be constant).

(4) Describe the image of br in Rr−1
≥0 .

In the variant where one does not admit any contractig subgraphs, the
tropical branch morphism is a map of equidimensional cone complexes. Its
degree may be therefore computed as in Hannah’s course: the local degree
at a point inside a maximal dimensional cone σF is equal to the lattice index

br(Zr−1 ∩ σF )
Zr−1 ∩ Im(br).

of the image of the integral lattice of σF inside the integral lattice of Im(br).
Then the degree of br is defined as the sum of all local degrees for all inverse
images of a point in the interior of Im(br).
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If one allows the moduli space to parameterize covers contracting sub-
graphs, one observes that all cones of excess dimension map to proper faces
of Im(br). One may therefore apply the same definition as before and obtain
the exact same answer.

Exercise 25. Compute the tropical Hurwitz number Htrop
1 (5,−5) using

Definition 2.3.

3. Tropical Double Hurwitz Numbers

In the last section we saw tropical Hurwitz numbers arise as the degree
of a tropical branch morphism among appropriate moduli spaces of covers
of tropical curves. Now we observe that such degree is computed by a com-
binatorial formula in terms of appropriately decorated graphs.

Definition 3.1. For fixed g and x = (x1, . . . , xn), a graph Γ is a mon-
odromy graph if:

(1) Γ is a connected, genus g, directed graph.
(2) Γ has n 1-valent vertices called leaves; the edges leading to them are

ends. All ends are directed inward, and are labeled by the weights
x1, . . . , xn. If xi > 0, we say it is an in-end, otherwise it is an out-end.

(3) All other vertices of Γ are 3-valent, and are called internal vertices.
Edges that are not ends are called internal edges.

(4) After reversing the orientation of the out-ends, Γ does not have
directed loops, sinks or sources.

(5) The internal vertices are ordered compatibly with the partial order-
ing induced by the directions of the edges.

(6) Every internal edge e of the graph is equipped with a weight w(e) ∈
N. The weights satisfy the balancing condition at each internal
vertex: the sum of all weights of incoming edges equals the sum of
the weights of all outgoing edges.

Using monodromy graphs, tropical Hurwitz numbers are computed in
[CJM10].

Theorem 3.2. The tropical (double) Hurwitz number Htrop
g (x) is com-

puted as:

Htrop
g (x) = ∣Aut(x)∣∑

Γ

1

∣Aut(Γ)∣φΓ, (22)

where the sum is over all monodromy graphs Γ for g and x, and φΓ denotes
the product of weights of all internal edges.

Exercise 26. Using notions from Hannah’s mini-course try to come up
with a sketch of a proof for this theorem.

Example 3.2. Here are some examples of tropical Hurwitz numbers.
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H0((1,1),−(1,1)) = 2 2
1

-1

-1

1

H0((2,1),−(2,1)) = 4 3
2

-1

-2

1

+

-2

2 -1

1

1

Figure 3.2 illustrates how piecewise polynomiality and wall crossings nat-
urally arise for tropical Hurwitz numbers. Local polynomiality arises from
the balancing condition: the weight of the egdes of monodromy graphs are
linear homogeneous polynomials in the xi’s (in higher genus there are g
additional variables that need to be integrated over the lattice points of a
g-dimensional polytope), showing that each graphs contributes with a poly-
nomial multiplicity or the correct degree. As one may see in the example,
different graphs contribute according to the sign of x1+y1, giving rise to two
different polynomials function.

Exercise 27. Compute Htrop
1 (d,−d),Htrop

2 (d,−d) and observe that the
results are polynomial in d.

Tropical Hurwitz numbers are related to algebraic ones via a correspon-
dence theorem.

Theorem 3.3 (Theorem 5.28 [CJM10]).

Htrop
g (x) =Hg(x) (23)

We will look at a couple different ways to understand this theorem. The
first was also the original proof of this correspondence theorem, which shows
that monodromy graphs can be viewed as a natural indexing set for the count
of monodromy representations.

4. Correspondence by Cut and Join

The Cut and Join equations are a collection of recursions among Hurwitz
numbers. In the most elegant and powerful formulation they are expressed
as one differential operator acting on the Hurwitz potential. Here we limit
ourselves to a basic discussion, and refer the reader to [GJ99] for a more
in-depth presentation.

Let σ ∈ Sd be a fixed element of cycle type η = (n1, . . . , nl), written as a
composition of disjoint cycles as σ = cl . . . c1. Let τ = (ij) ∈ Sd vary among all
transpositions. The cycle types of the composite elements τσ are described
below.

cut: if i, j belong to the same cycle (say cl), then this cycle gets
“cut in two”: τσ has cycle type η′ = (n1, . . . , nl−1,m′,m′′), with
m′ +m′′ = nl. If m′ /=m′′, there are nl transpositions giving rise to
an element of cycle type η′. If m′ =m′′ = nl/2, then there are nl/2.
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Figure 3.2. Computing double Hurwitz numbers using The-
orem 3.2 and observing the wall crossing.

join: if i, j belong to different cycles (say cl−1 and cl ), then these
cycles are “joined”: τσ has cycle type η′ = (n1, . . . , nl−1 +nl). There
are nl−1nl transpositions giving rise to cycle type η′.

Figure 3.3 illustrates the above discussion.

Example 4.1. Let d = 4. There are 6 transpositions in S4. If σ =
(12)(34) is of cycle type (2,2), then there are 2 transpositions ((12) and
(34) ) that “cut” σ to give rise to a transposition and 2 ⋅ 2 transpositions
((13), (14), (23), (24)) that “join” σ into a four-cycle.

Exercise 28. Consider the Hurwitz potential for simple Hurwitz num-
bers (this restriction is not at all important, but it makes the notation a bit
less cumbersome), and show how the cut and join obtained by “crashing” a
simple branch point into the special one gives rise to a differential operator
acting on the Hurwitz potential.

To understand how cut and join determines the correspondence theorem
3.3, we specialize the definition of Hurwitz number by counting monodromy
representations to the case of double Hurwitz numbers.

Hr
g(x) ∶=

∣Aut(x0)∣∣Aut(x∞)∣
d!

∣{σ0, τ1, . . . , τr, σ∞ ∈ Sd}∣
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Fig. 1 Composing with a transposition in Sd . How it affects the cycle type of σ and multiplicity

operator acting on an appropriate potential function. Since our use of cut and join is
unsophisticated, we limit ourselves to a basic discussion, and refer the reader to [5]
for a more in-depth presentation.

Let σ ∈ Sd be a fixed element of cycle type η = (n1, . . . , nl), written as a compo-
sition of disjoint cycles as σ = cl · · · c1. Let τ = (ij) ∈ Sd vary among all transposi-
tions. The cycle types of the composite elements τσ are described below.

cut: if i, j belong to the same cycle (say cl), then this cycle gets “cut in two”: τσ
has cycle type η′ = (n1, . . . , nl−1,m

′,m′′), with m′ + m′′ = nl . If m′ $= m′′,
there are nl transpositions giving rise to an element of cycle type η′. If m′ =
m′′ = nl/2, then there are nl/2.

join: if i, j belong to different cycles (say cl−1 and cl ), then these cycles are
“joined”: τσ has cycle type η′ = (n1, . . . , nl−1 + nl). There are nl−1nl trans-
positions giving rise to cycle type η′.

Example 3.1 Let d = 4. There are 6 transpositions in S4. If σ = (12)(34) is of cycle
type (2,2), then there are 2 transpositions ((12) and (34)) that “cut” σ to give rise
to a transposition and 2 · 2 transpositions ((13), (14), (23), (24)) that “join” σ into a
four-cycle.

For readers allergic to notation, Fig. 1 illustrates the above discussion.

4 Double Hurwitz numbers and Weighted graph sums

The analysis in Sect. 3 leads us to compute double Hurwitz numbers in terms of a
weighted sum over graphs. The idea is to start at one of the special points, and count
all possible monodromy representations as each transposition gets added until one
gets to the second special point with the specified cycle type. We now make this
precise.

Fix g and let η = (n1, . . . , nk) and ν = (m1, . . . ,ml) be two partitions of d . Denote
by s = 2g − 2 + l + k the number of non-special branch points, determined by the
Riemann–Hurwitz formula.

Definition 4.1 Monodromy graphs project to the segment [0, s + 1] and are con-
structed according to the following procedure:

(a) Start with k small segments over 0 labeled n1, . . . , nk . We call these n’s the
weights of the strands.

Figure 3.3. Composing with a transposition in Sd. How it
effects the cycle type of σ and multiplicity.

such that:
● σ0 has cycle type x0;
● τi’s are simple transpositions;
● σ∞ has cycle type x∞;
● σ0τ1 . . . τrσ∞ = 1
● the subgroup generated by such elements acts transitively on the

set {1, . . . , d}.
The key insight is that one can organize this count in terms of the cycle

types of the composite elements

Cx0 ∋ σ0, σ0τ1, σ0τ1τ2, . . . , σ0τ1τ2 . . . τr−1, σ0τ1τ2 . . . τr−1τr ∈ Cx∞

At each step the cycle type can change as prescribed by the cut and join
recursions, and as in Figure 3.3 such change may be tracked diagrammati-
cally; for each possibility we can construct a graph with edges weighted by
the multiplicites of the cut and join equation. Such graphs are precisely the
monodromy graphs and the cut and join multiplicities agree with the those
given in Definition 3.2.

Exercise 29. Fill in the details of the above proof sketch.

5. Appendix: conjectural ELSV for double Hurwitz numbers

The combinatorial structure of double Hurwitz numbers seems to sug-
gest the existence of an ELSV type formula, i.e. an intersection theoretic
expression that explains the polynomiality properties. This proposal was
made in [GJV03] for the specific case of one-part double Hurwitz num-
bers, where there are no wall-crossing issues. After [CJM11], an intriguing
strengthening of Goulden-Jackson-Vakil’s original conjecture was proposed.

Conjecture (Goulden-Jackson-Vakil+). For x ∈ Zn with ∑xi = 0,

Hg(x) = ∫
P (x)

1 −Λ2 + . . . + (−1)gΛ2g

∏(1 − xiψi)
, (24)

where,
(1) P (x) is a moduli space (depending on x) of dimension 4g − 3 + n.
(2) P (x) is constant on each chamber of polynomiality.
(3) The parameter space for double Hurwitz numbers can be identified

with a space of stability conditions for a moduli functor and the
P (x) with the corresponding compactifications.

(4) Λ2i are tautological Chow classes of degree 2i.
(5) ψi’s are cotangent line classes.



38 CHAPTER 3. TROPICAL HURWITZ NUMBERS

Goulden, Jackson and Vakil, in the one part double Hurwitz number
case, propose that the mystery moduli space may be some compactification
of the universal Picard stack overMg,n. They verify that such a conjecture
holds for genus 0 and for genus 1 by identifying Pic1,n withM1,n+1.

A lot of progress has happened since in terms of understanding the ge-
ometry of compactifications of the Picard stack as well as its tautological
intersection theory, see e.g. [MV14]; yet to this day an optimal answer
to this conjecture has not been given. Intersection theoretic formulas for
double Hurwitz numbers on the moduli spaces of curves have been given
[CM14, Lew18] ; however in order to witness piecewise polynomiality some
sophisticated geometric inputs such as controlling descendant intersections
with double ramification classes [BSSZ15] or Chiodo classes are required.



CHAPTER 4

Degeneration Formulas

In this chapter we explore a rich recursive structure built into Hurwitz
theory, that arises because the count of covers are preserved when the curves
are deformed into nodal curves. This statement is made precise by the
degeneration formulas. We interpret the degeneration formulas in terms of
the boundary geometry of moduli spaces of covers, and see how that makes
the correspondence theorem to tropical Hurwitz numbers transparent.

1. Degeneration

Target genus 0, 3-pointed Hurwitz numbers suffice to determine the
whole theory of Hurwitz numbers, because of the degeneration formu-
las.

Theorem 4.1 (Degeneration formulas). Then:
(1)

H0,●
g→0(η1, . . . , ηs, µ1, . . . , µt) = ∑

ν⊢d

∏νi
∣Autν∣H

0,●
g1→0(η1, . . . , ηs, ν)H

0,●
g2→0(ν,µ1, . . . , µt)

with g1 + g2 + ℓ(ν) − 1 = g.
(2)

H0,●
g→1(η1, . . . , ηs) = ∑

ν⊢d

∏νi
∣Autν∣H

0,●
g−ℓ(ν)→0

(η1, . . . , ηs, ν, ν).

These formulas are called degeneration formulas because geometrically
they correspond to simultaneously degenerating the source and the target
curve, as illustrated in Figure 4.1. We will discuss the geometric perspective
on degeneration formulas and how subtle issues of infinitesimal automor-
phisms (that explain the factor of z(ν)) arise. A combinatorial proof is
straightforward, and we present it here.
Idea for proof of (1): recall that the quantity

d!

∏ ∣Autηi∣∏ ∣Autµj ∣
H0,●

g→0(η1, . . . , ηs, µ1, . . . , µt) = ∣M ∣

may be computed by counting appropriate monodromy representations, i.e.
(s + t)−tuples of permutations with prescribed cycle types whose product is
the identity. We denote by M the set of monodromy representations of this
type, and by Mη,ν ,Mµ,ν the set of monodromy representations associated to
the collection of pairs of factors on the right hand side of (1).

Given one monodromy representation m ∈ M , m consists of an (s +
t)-tuple {σ1, . . . , σs, σ̃1, . . . , σ̃t}. Define ξ = σ̃1 ○ . . . ○ σ̃t, and observe that

39
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Figure 4.1. Degeneration of a cover to a nodal cover. Note
that source and target degenerate simultaneously and the
ramification orders on both sides of the node match.

{σ1, . . . , σs, ξ} and {ξ−1, σ̃1, . . . , σ̃t} give two monodromy representations (for
different Hurwitz problems). This construction thus defines a function

Φ ∶M →∐
ν

Mη,ν ×Mµ,ν .

The function Φ is not surjective, but its image onto each product set can
be described and counted (using some standard symmetric group nonsense
which is recalled for you in Exercise 30); this gives rise to formula (1).

Exercise 30. Let z(ν) denote the order of the centralizer of a permu-
tation of cycle type ν. Figure out a combinatorial formula for z(ν), and
interpret it as the size of the automoprhism group of a cover of P1 by a
bunch of P1’s with only two branch points. Prove the identity ∣Cν ∣z(ν) = d!
(hint: use the orbit-stabylizer theorem for a group action).

Exercise 31. Complete the idea of proof of (1) from Theorem 4.1 into
a proof.

Exercise 32. Prove part (2) of Theorem 4.1.

Exercise 33. The degeneration formulas are most elegantly stated in
terms of disconnected Hurwitz numbers, but in fact one can formulate de-
generation formulas for connected Hurwitz numbers as well. Think about
what kind of shape these statements ought to have.

2. Correspondence by Degeneration Formula

To understand how degeneration formula gives rise to the correspondence
theorem 3.3, it is useful to refer to the diagram:

M(x) =M∼
g(x)

stab //

br
��

Mg,n

Mbr =M0,2+r(1,1, ε, . . . , ε)/Sr

, (25)

and recall that the double Hurwitz number is the degree of the branch mor-
phism br. The degree of br∗([pt.]) may be computed by choosing a zero-
dimensional boundary stratum ∆ ∈ LM(r) as a representative for the class
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of a point. This consists of a chain of r projective lines, with the two branch
points with ramification profiles x± on opposite external components of the
chain, and exactly one simple branch point on each component of the chain.
For any inverse image (f ∶ C → T ) ∈ br−1(∆), the irreducible components
of C are rational and contain either two or three special points. In this
context, a special point is either a node or a relative point. The degree of
br∗([pt.]) is then obtained by counting each inverse image (f ∶ C → T ) with
the multiplicity prescribed by the degeneration formula [LR01, Li02b].

Exercise 34. If f ∶ C1 ∪C2 → T1 ∪nT
T2 is a map of nodal curves, nT is

the node separating T1 and T2, and n1, . . . , nk are the nodes of C mapping to
nT with ramification orders x1, . . . , xk; then the degeneration formula assigns
“nT ” multiplicity:

● ∏xi/∣Aut x∣ if you consider C1 and C2 are marked curves (i.e. if you
are able to distinguish all k nodes even if some of the ramification
orders are the same;
● z(x1, . . . , xk) if C1 and C2 are not considered marked curves, i.e. if

two nodes with the same ramification order are indistinguishable.

Now for the exercise:

(1) understand why the two situations are equivalent;
(2) understand the multiplicity of the degeneration formula in the sec-

ond case by interpreting f as a map T1 ∪nT
T2 → BSd giving rise to

a fiber product over the inertia stack of BSd.

The dual graphs of the source curves of maps (f ∶ C → T ) ∈ br−1(∆) are
naturally identified with combinatorial types of tropical covers F ∶ Γ → R
of the tropical line, where the expansion factors of the edges correspond to
the ramification orders of the corresponding (shadows of) nodes. This iden-
tification gives a bijection between the points (f ∶ C → T ) ∈ br−1(∆) and
the monodromy graphs from Definition 3.1. The correspondence theorem
between algebraic and tropical Hurwitz numbers follows from the fact that
the local degree of the tropical branch morphism at σF equals the degener-
ation formula multiplicity for the corresponding algebraic cover f ∶ C → T ,
as described in Exercise 34.

3. Tropical General Hurwitz Numbers

The correspondence theorem between classical and tropical Hurwitz num-
bers extends beyond the case of double Hurwitz numbers to any kind of Hur-
witz numbers; the general case illustrates an important phenomenon: there
are certain parts of the algebraic geometry of covers of curves that are simply
not visible to tropical geometry, and must be added to tropical multiplicities
in order to obtain correpondence theorems. Sometime this information is re-
ferred to as geometric seed data. For Hurwitz theory, the geometric seed
data consists precisely of target genus zero, three-point Hurwitz numbers.

Fix a vector of partitions µ⃗ = (µ1, . . . , µr) of an integer d > 0. We wish
to study covers of genus g tropical curves, with prescribed ramification data
over r points and simple ramification over the remaining s points.
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A map of tropical curves satisfies the local Riemann–Hurwitz condition
if, when v′ ↦ v with local degree d, then

2 − 2g(v′) = d(2 − 2g(v)) −∑(me′ − 1), (26)

where e′ ranges over edges incident to v′, and me′ is the expansion factor of
the morphism along e′.

Definition 3.1. A tropical admissible cover of a tropical curve is a
harmonic map of tropical curves that satisfies the local Riemann–Hurwitz
condition at every point.

Let Htrop
g→h,d(µ⃗) denote the space of tropical admissible covers of genus

h tropical curves by genus g tropical curves, with expansion factors along
infinite edges prescribed by µ⃗. It also comes with a tautological branch
morphism to Mtrop

h,r+s. The degree of the branch morphism is again used to
define tropical Hurwitz numbers.

Definition 3.2. Let Θ be a combinatorial type of a tropical admissible
cover. We define its weight ω(Θ) as the product of:

(1) A factor of 1
∣Aut(Θ)∣ .

(2) A factor of local Hurwitz numbers ∏v∈Γtgt
H(v).

(3) A factor of M = ∏e∈E(Γtgt)Me, where Me is the product of the
expansion factors above the edge e.

Remark 3.3. We briefly discuss how these factors arise. While (1)−(3)
are defined in terms of combinatorics of the tropical covers, they have natural
counterparts in the classical theory of admissible covers. Weight (1) accounts
for automorphisms of covers lifting the identity map on the target curve. The
term (2) encodes the fact that there may be multiple zero dimensional strata
in Hg,d(µ⃗) which have the same dual graph. Finally (3) can be thought of
either as “ghost automorphisms” coming from the orbifold structure on a
twisted cover [ACV01] or as a multiplicity coming from the degeneration
formula.

Definition 3.4. Let σΓ be any fixed top dimensional cone of the tropical
moduli space Mtrop

h,r+s. Denote by σHΘ ↦ σΓ a cone in the moduli space
Htrop

g,d (µ⃗) of combinatorial type Θ such that the base graph of Θ is equal to
Γ. The restriction of the tropical branch map is a surjective morphism of
cones with integral structure of the same dimension.

Then the tropical Hurwitz number is equal to:

Hg→h,d(µ⃗) = ∑
σHΘ↦σΓ

ω(Θ). (27)

Theorem 4.2 ([BBM11]). Classical and tropical Hurwitz numbers co-
incide, i.e. we have

Hg→h,d(µ⃗) =Htrop
g→h,d(µ⃗).

Example 3.5. Consider the Hurwitz number H2
1→0((3), (3)), which can

be easily computed to equal 2. This Hurwitz number may be computed using
theorem 3.3, which is illustrated in black in Figure 4.2. In the same figure,
red lines were added to illustrate how the Hurwitz number is computed using
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3 3

2

1

2
2

1 1

(3) (3)

(2,1) (2,1)

Figure 4.2. The Hurwitz number H2
1→0((3), (3)) computed

a’ la CJM (black) and a’ la BBM (black plus red).

Theorem 4.2. In this case the local Hurwitz numbers are both equal to 1
and therefore the computation is really quite analogous in both cases.

Example 3.6. The Hurwitz number H0
2→0((3), (3), (3), (3)) may not

be computed with Theorem 3.3, as it has more than two branch points
with non-generic branching. Figure 4.3 illustrates the computation following
Theorem 4.2. There are two tropical admissible covers of a tree with four
leaves. The left hand side of the figure corresponds to a cover where both
vertices have genus 1, and all egdes have weight equal to 3. The local Hur-
witz numbers H0

1→0((3), (3), (3)) = 1/3 (one may see that there are exactly
two monodoromy representations, that are obtainable when one chooses the
same three-cycle three times). The cover has no nontrivial automorphisms.
Therefore the contribution from the left hand side graph is 1 ⋅(1/3)2 ⋅3 = 1/3.

The right hand side column represents a tropical cover where the vertices
are rational, the compact edges have weight one and the ends have weight 3.
The local Hurwitz numbers here are H0

0→0((3), (3), (1,1,1)) = 2. The cover
has automorphism group equal to S3, as the three compact edges may be
permuted arbitrarily. Hence the contribution from the right hand side cover
is (1/6) ⋅ 22 ⋅ 13 = 2/3.

All together we see thatH0
2→0((3), (3), (3), (3)) = 1, which can be checked

by elementary arguments about the possible monodromy representations: to
obtain the identity with four three-cycles, one must take each of (123) and
(132) exactly twice. There are four choose two possibilities for the posi-
tions of (123), which then determines the remaining elements to be (132)’s.
Dividing by 3! one obtains the result.

Exercise 35. Consider the connected Hurwitz number H0
1→0((2,1)6) =

45. Compute this number in two ways:

(1) using the algorithm from Theorem 3.3.
(2) using Theorem 4.2, where for the base graph you should use a three-

valent, six-leafed tree with a vertex which is not adjacent to any
leaf.
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Figure 4.3. The computation of H0
2→0((3), (3), (3), (3)) us-

ing Theorem 4.2.

4. Appendix: tropicalization of moduli spaces

In [CMR16], Theorem 4.2 is viewed as a consequence of functorial trop-
icalization. Denote by Han

g→h,d(µ⃗) (resp. M
an
g,n) the Berkovich analytification

of the space of admissible covers (resp. the moduli space of stable curves).
Loosely speaking, the analytification of a space is patched up by the space of
valuations over open sets of the original space, with an appropriate topology.
This gives rise to a space which is in many respects monstruous, but it does
have some appealing properties, e.g. it is Haussdorf and path-connected.
When a space comes with a natural divisorial boundary, as it is the case
with pretty much all the moduli spaces we have been looking at, then one
may restrict their attention only to divisorial valuations along the irreducible
components of the boundary divisor. This gives rise to a subcomplex of the
analytic space called a skeleton, which tends to agree with the corresponding
tropical object. Here is a more precise statement in the case of the moduli
space of admissible covers.

Theorem 4.3 ([CMR16]). The set theoretic tropicalization map trop ∶
Han

g→h,d(µ⃗) → H
trop
g→h,d(µ⃗) factors through the canonical projection from the

analytification to its skeleton Σ(Han
g→h,d(µ⃗)),

Han
g→h,d(µ⃗) Htrop

g→h,d(µ⃗)

Σ(Han
g→h,d(µ⃗)).

trop

pH tropΣ
(28)

Furthermore the map tropΣ is a surjective face morphism of cone complexes,
i.e. the restriction of tropΣ to any cone of Σ(Han

g→h,d(µ⃗)) is an isomor-
phism onto a cone of the tropical moduli space Htrop

g→h,d(µ⃗). The map tropΣ
extends naturally and uniquely to the extended complexes Σ(Han

g→h,d(µ⃗)) →
Htrop

g→h,d(µ⃗).
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The map trop depends on the choice of the admissible cover compact-
ification even when restricted to the analytification of the Hurwitz space.
Intuitively, one may think of a point in Han

g→h,d(µ⃗) as a family of smooth
covers over a punctured disk. The tropicalization of such point is obtained
by extending the family to an admissible cover and metrizing the dual graph
of the central fibers by the valuations of the smoothing parameters of the
nodes.

Theorem 4.4 ([CMR16]). Let br denote the branch map Hg→h,d(µ⃗)→
Mh,r+s, and src denote the source map Hg→h,d(µ⃗) → Mg,n, where n is the
number of smooth points in the inverse image of the branch locus. Then the
following diagram is commutative:

Han
g→h,d(µ⃗) M

an
g,n

Htrop
g,d (µ⃗) M

trop
g,n

M
an
h,r+s M

trop
h,r+s,

trop

bran

srcan

trop

brtrop

srctrop

trop

The induced map on skeleta of the branch (resp. source) morphism fac-
tors as a composition of the map tropΣ to Σ(Han

g→h,d(µ⃗)), followed by the
tropical branch (resp. source) map, so brtrop = tropΣ ○ brΣ (resp. srctrop =
tropΣ ○ srcΣ).

One then checks with a local computation that the choice of weights for
the cones of the moduli space of tropical admissible covers makes the degree
of brtrop and bran agree.

Example 4.1.

As an example, consider the moduli space Htrop
1→0,3((3), (3), (2,1), (2,1)).

It admits a tropical branch morphisms to M trop
0,4 . The cones of the moduli

spaces of tropical admissible covers are given weights corresponding to the
number of inverse images of a general point in the analytification. As a
consequence, the branch morphism has a well-defined degree, equal to the
Hurwitz number. The combinatorial typers of admissible covers are depicted
in Figure 4.4: there are three combinatorial types, called class I, II, and
III. The tropical branch morphism is illustrated in Figure 4.5: the space
Htrop

1→0,3((3), (3), (2,1), (2,1)) consists of four rays, two parameterizing covers
of class III, and one for each of the remaining classes. The two cones of
class three map with degree 2 to two of the rays of M trop

0,4 , whereas the two
other rays map each with degree one to the remaining ray of M trop

0,4 .

Exercise 36. Describe the moduli spaces of tropical admissible covers
Htrop

1→0,3((3), (3), (2,1), (2,1)) and the tropical branch morphism to M trop
0,4 .
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3
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1

2

1

(2,1)

(3)
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1 1
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Figure 4.4. Classes of combinatorial types of degree-3 trop-
ical admissible covers of a tropical genus-zero curve with ram-
ification profile ((3), (3), (2,1), (2,1))

M trop
0,4

1

1

2

2
Htrop

1→0,3((3), (3), (2,1), (2,1))

brtrop

(3)

(3)

(2,1)

(2,1)

(3) (3)

(2,1)
(2,1)

(3)(3)

(2,1) (2,1)

CLASS I

CLASS II

CLASS III

CLASS III

Figure 4.5. The tropical branch morphism from Example
4.1. The cones of the moduli space of admissible covers are
given weights so that the morphism has constant degree equal
to the Hurwitz number.



CHAPTER 5

Hurwitz Numbers from the Moduli Space of Curves

In this lecture we explore how double Hurwitz numbers may be obtained
as intersection numbers on moduli spaces of curves. First we review an ap-
proach that uses descendant intersections with the double ramification cycle.
Next we provide a recent perspective on double Hurwitz numbers, that ties
together tropical and logarithmic geometry. The double Hurwitz numbers
are obtained as the solution of an intersection problem on a birational modi-
fication of the moduli space of curves. The key property of such modification
is that the (proper transform of the) double ramification cycle is dimension-
ally transverse to the boundary of the moduli space, making it possible to
find a collection of strata cutting down a zero dimensional cycle of degree
equal to Hg(x).

1. Double Hurwitz numbers through DR

In [CM14], the double Hurwitz number is obtained as the degree of a
tautological 0-cycle onMg,n. Consider the diagram of spaces:

M(x) =M∼
g(x)

stab //

br
��

Mg,n

Mbr =M0,2+r(1,1, ε, . . . , ε)/Sr

(29)

The double Hurwitz number Hg(x) is the degree of br:

Hg(x)[pt.] = br∗([pt])

We rewrite this expression in terms of ψ classes. There are three different
kinds of ψ classes playing a role in the above diagram:

(1) ψ̂0: the psi class on the target space at the relative divisor 0, i.e. the
first Chern class of the cotangent line bundle at the relative point
0 on the universal target.

(2) ψ̃i: the psi classes on the space of rubber stable maps at the i-th
mark. Remember that we are marking the preimages of the relative
divisors.

(3) ψi is the ordinary psi class on the moduli space of curves.
The following lemmas allow to relate these three types of classes among

each other.

Lemma 5.1.

ψ̂2g−3+n = 1

r!
[pt.]

47
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Sketch of proof. This follows immediately by combining the follow-
ing facts:

(1) Any ψ class on an (ordinary) M0,n has top self intersection 1[pt.].
(2) The fact that the point 0 has weight 1 means that no twigs con-

taining the point 0 get contracted despite the small weigths at
the other points. Therefore if we consider the contraction map
c ∶M0,r+2 →M0(1,1, ε, . . . , ε), we have that c∗(ψ1) = ψ̂0.

(3) The r! factor comes from the fact that the branch space is a Sr
quotient ofM0(1,1, ε, . . . , ε).

□

Lemma 5.2.
br∗(ψ̂0) = xiψ̃i

where it is understood that the i-th mark is a preimage of 0.

Sketch of proof. Consider the diagram:

U(x)

##
f

��
Ubr

$$

M(x)

br
��

si
gg

Mbr

0

]]

(30)

Then:

br∗(ψ̂0) = −br∗0∗(0) = −s∗i f∗(0) = −s∗i (xisi) = xiψ̃i

□

Combining the two above lemmas, one obtains:

Hg(x) = r!br∗(ψ̂2g−3+n) = r!x2g−3+ni ψ̃2g−3+n
i

Refer now to Lemma 2.1, to see that the tilda-psi classes are pull-backs
of ordinary psi classes plus some corrections, namely by the divisor Di,x in
the spaces of relative stable maps parameterizing curves where the mark lies
on an unstable component of the curve. Then one can use projection formula
to obtain:

Hg(x) = r!x2g−3+ni (ψ +Di,x)2g−3+nst∗[M
∼
g(P1,x)]vir (31)

Formula (31) explains the piecewise polynomiality of double Hurwitz
numbers as follows: intersections of ψ classes with the class st∗[M

∼
g(P1,x)]vir

are shown to be polynomial in the xi’s in [BSSZ15]. The piecewise part
arises from the fact that in different chambers of polynomiality one may
have different divisorial corrections Di,x.

Exercise 37. Compute the double Hurwitz numbers H0(x1, x2, x3, x4)
and H0(x1, x2, x3, x4, x5) using formula (31). In genus zero one can take
advantage of the (greatly) simplification that the double ramification cycle
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st∗[M
∼
0(P1,x)]vir is isomorphic to the moduli space of curves M0,n. Wit-

ness the piecewise polynomiality of double Hurwitz numbers arising from
“variations of psi classes”.

2. Double Hurwitz numbers from piecewise polynomials

Consider the moduli space Mtrop,∼
g (P1,x) of tropical, rubber, relative

stable maps, as in [CMR17]; denoting r = 2g − 2 + n, there is a branch
morphism

brtrop ∶Mtrop,∼
g (P1,x)→ [M0,2+r(1,1, ε, . . . , ε)/Sr] .

Concretely, the target of the branch morphisms may be identified with the
parameter space for effective divisors of degree r on R up to a global trans-
lation. Normalizing so that the first point is 0 ∈ R, a fundamental domain
corresponds to the cone σ = {0 ≤ t1 ≤ t2 ≤ . . . ≤ tr−1} ⊂ Rr−1.

Exercise 38. In Chapter 3 the target of the branch morphism was
taken to be Rr−1, as the points were considered ordered in increasing order.
As a result, the image of the branch morphism was a single cone in Rr−1.
Recognize how the two perspectives are equivalent.

One has also a stabilization morphism:

sttrop ∶Mtrop,∼
g (P1,x)→Mtrop

g,n .

Definition 2.1. We denote by DR○,tropg (x,0) the closure of the inverse
image via the branch morphism of the interior of the cone σ:

DR○,tropg (x,0) ∶= (br−1trop(σ○)) .

The cone complex structure on sttrop(DR○,tropg (x,0)) is induced from the
cone complex structure on Mtrop,∼

g (P1,x); notice that in general it does
not agree with the one induced by restriction from Mtrop

g,n . However the
integral lattice on sttrop(DR○,tropg (x,0)) is restricted from the integral lattice
ofMtrop

g,n .

Exercise 39. Give a characterization of DR○,tropg (x,0) in terms of the
combinatorial types of the tropical covers parameterized.

The space sttrop(DR○,tropg (x,0)) is a cone complex of pure codimension
g inside Mtrop

g,n . The maximal cones of DR○,tropg (x,0) are naturally indexed
by monodromy graphs of type (g,x).

The cone complex sttrop(DR○,tropg (x,0)) does not necessarily give a subdi-
vision ofMtrop

g,n , but one may add cones and obtain a subdivision. We denote
byMtrop

g (x,0) any subdivision ofMtrop
g,n which contains sttrop(DR○,tropg (x,0))

as a subcomplex.

Exercise 40. Describe DR○,tropg (x,0) in the following two cases:
● g = 0,x = (4,−1,−1,−1,−1); in this case notice this space gives you

a subdivision of M trop
0,5 .

● g = 1,x = (4,−1,−1,−1,−1); in this case notice this space may be
completed to a subdivision of M trop

1,5 .
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As discussed in Dhruv’s mini-course,Mtrop
g (x,0) determines a birational

morphism
π ∶Mg(x,0)→Mg,n, (32)

and piecewise polynomial functions on Mtrop
g (x,0) correspond to cohomol-

ogy classes on Mg(x,0). Also, the proper transform of the closure of the
main component of the space of relative stable maps DR○,☇g (x,0) is dimen-
sionally transverse to the boundary of Mg(x,0). For any m-dimensional
cone σ ∈ sttrop(DR○,tropg (x,0)), there is a corresponding codimension-m, lo-
cally closed stratum ∆σ ⊆ Mg(x,0). The double Hurwitz number Hg(x)
is obtained as the intersection of DR○,☇g (x,0) with a union of some of these
strata.

Proposition 2.2. We have

Hg(x) = deg(DR○,☇g (x,0) ⋅∑
σΓ

∆σΓ
) , (33)

where the sum ranges over all maximal cones of DR○,tropg (x,0), and σΓ de-
notes the cone indexed by the monodromy graphs Γ.

Proof. The class of the stratum ∆σΓ
may be described as a piecewise

polynomial function on Mtrop
g (x,0). Denoting by φρ the piecewise linear

function with slope 1 along ρ and zero along all other rays:

[∆σΓ
] = ∏

ρ∈σΓ

φρ = ∶ φσΓ
, (34)

where the product runs over all the rays of the cone σΓ.
By projection formula, we have deg(DR○,☇g (x,0) ⋅∆σΓ

) = deg(st∗(φσΓ
)).

Since the assignment of a cohomology class to a piecewise polynomial func-
tion is functorial, we have

st∗(φσΓ
) = st∗trop(φσΓ

), (35)

where in the right hand side of (35) φσΓ
is regarded as a piecewise polynomial

function, whereas in the left hand side as a cohomology class on Mg(x,0).
By definition of the maps sttrop and brtrop, one sees that

st∗trop(φσΓ
)∣σΓ
= br∗trop (t1

r−1
∏
i=2
(ti − ti−1))

∣σΓ

; (36)

whereas for Γ̃ /= Γ,
st∗trop(φσΓ

)∣σΓ̃
= 0. (37)

Summing over all monodromy graphs, one obtains

st∗trop (∑
Γ

φσΓ
) = br∗trop (t1

r−1
∏
i=2
(ti − ti−1)) . (38)

Since the polynomial function t1∏r−1
i=2 (ti−ti−1) on [M0,2+r(1,1, ε, . . . , ε)/Sr]

corresponds to the class of the unique closed stratum in the algebraic moduli
space, we have

st∗trop (∑
Γ

φσΓ
) = br∗ ([pt.]) =Hg(x)[pt.], (39)
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brtrop

sttrop
f

Mtrop
1,((−3,3),0)

1

2

0
t1

R

Γ

Mtrop,∼
1 (P1, (−3,3))

[Mtrop,∼
0,2+2⋅ϵ/S2]

3

3

t1

l1= 2l2

DR○,trop
1,((−3,3),0) = ρ

Figure 5.1. The subdivision of the moduli space Mtrop
1,2 in-

duced by the moduli space of tropical rubber mapsMtrop,∼
1 (P1, (−3,3)).

from which the statement of the Proposition follows immediately. □

Example 2.3. We consider the double Hurwitz number H1((−3,3)) = 2
and compute it as in Proposition 2.2. The moduli space of tropical rub-
ber stable maps Mtrop,∼

1 (P1, (−3,3)) , illustrated in red in Figure 5.1, is
not equidimensional: it is the union of a two dimensional cone param-
eterizing tropical maps with a contracting tropical elliptic curve, with a
one dimensional cone, whose general element parameterizes the covers with
two compact edges of length l1 and l2, as drawn on the leftmost side of
Figure 5.1. The tropical branch morphism contracts the two dimensional
cone of Mtrop,∼

1 (P1, (−3,3)) and maps the one dimensional cone onto the
unique ray of [Mtrop,∼

0,2+2⋅ϵ/S2]. The image of the one dimensional cone of
Mtrop,∼

1 (P1, (−3,3)) via the tropical stabilization morphism is the the slope
−1/2 ray ρ in Mtrop

1,2 . This ray alone gives a subdivision Mtrop
1((3,−3,),0) of

Mtrop
1,2 , which imposes a simple toroidal blowup in the algebraic moduli space

M1,2, as depicted in Figure 5.2. The closure of Mtrop,∼
1 (P1, (−3,3)) is not

dimensionally transversal to the boundary ofM1,2, but its proper transform
DR○,☇1 ((−3,3),0) is dimensionally transverse to the exceptional divisor E =
Dρ. One may compute the intersection multiplicity ∣Dρ ⋅ DR○,☇1 ((−3,3),0)∣
via a direct local coordinate computation as in Hannah’s minicourse (or see
[CMR16]). We bypass this technical computation by observing that the
piecewise linear function φρ associated to the exceptional divisor Dρ is such
that:

st∗trop(φρ) = l1 = 2l2 = br∗trop(t1). (40)

The multiplicity of br∗trop(t1) equals the product of the weights of the com-
pact edges of the graph Γ.

Alternatively, one may observe that the piecewise linear function t1 de-
termines the class of a point on the Losev-Manin space [LM(2)/S2], and
the assignment of a cohomology class on the algebraic moduli space to a
piecewise polynomial on the tropical moduli space is functorial. It follows
from (40) that the degree of the class associated to the piecewise polynomial
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π

M1,2 M+
1,(−3,3)

E =Dρ

M1(P1, (−3,3)) DR○,☇1 ((−3,3),0)

δ0 δ
′
0

Figure 5.2. The birational transormation induced by
Mtrop,∼

1 (P1, (−3,3)) on M1,2 and the dimensionally trans-
verse cycle DR○,☇g (x,0).

function st∗trop(φρ) equals the degree of br∗[pt.], which is by definition the
Hurwitz number H1(−3,3).

So far we presented the computation of the double Hurwitz numbers in
terms of birational modifications ofMg,n induced by tropical geometry which
is most natural from a geometric perspective. One may however replace the
cycle DR○,☇g (x,0) by the cycle DR☇g(x,0) where one does not discard the
excess dimensional cones, and obtain the same result.

Theorem 5.1. With notation as throughout this section, we have

Hg(x) = deg(DR☇g(x,0) ⋅ br∗trop (t1
r−1
∏
i=2
(ti − ti−1))) . (41)

Proof. For any cone σ in the difference

Mtrop,∼
g (P1,x) ∖DR○,tropg (x,0) (42)

the branch polynomial restricts identically to 0 on σ:

br∗trop (t1
r−1
∏
i=2
(ti − ti−1))

∣σ
≡ 0. (43)

Then we have:

deg(DR☇g(x,0) ⋅ br∗trop (t1
r−1
∏
i=2
(ti − ti−1)))) = deg(DR○,☇g (x,0) ⋅ br∗trop (t1

r−1
∏
i=2
(ti − ti−1)))

= Hg(x), (44)

with the last equality being the statement of Proposition 2.2. □

2.1. Lower genus double Hurwitz numbers and DR☇g(x,0). The
double Hurwitz number Hg(x) is the degree of the class br∗([pt.]) in the
moduli space of rubber relative stable maps Mtrop,∼

g (P1,x). For a general
choice of cycle representing the class of a point, the cycle br∗([pt.]) is sup-
ported on the main component of the moduli spaces of relative stable maps,
the closure of the locus parameterizing maps from smooth source curves. We
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show how we may choose an appropriate subcomplex of the space of tropical
relative stable maps that yields cohomology classes on Mg(x,0) whose in-
tersection with DR☇g(x,0) extracts the double Hurwitz numbers Hh(x), for
h < g.

Definition 2.4. For n ≥ 1, let Tn denote a graph obtained from a rooted,
trivalent tree with n + 1 leaves by attaching vertices of genus 1 at every leaf
except the root. While it does not matter what trivalent tree one considers,
the graph Tn is to be considered fixed.

For every monodromy graph of type (h,x), attach a copy of Tg−h on the
end labeled by x1. The graphs so obtained index a cone sub-complex M trop

g,h,x

of the moduli space Mtrop,∼
g (P1,x), which we use to define a cohomology

class onMg(x,0) extracing the double Hurwitz number Hh(x).

Proposition 2.5. We have

Hh(x) = x1 ⋅ 24g−h ⋅ ∣Aut(Tg−h)∣ ⋅ deg(DR☇g(x,0) ⋅∑
σΓ

∆σΓ
) , (45)

where the sum ranges over all maximal cones of the subcomplex .

Proof. Each maximal cone σΓ in M trop
g,h,x has dimension 2g − 3 + n, and

hence the corresponding stratum must intersect DR☇g(x,0) in top degree, as
expected. For every cone σΓ, the pull-back st∗(∆σΓ

) is supported on the
component Ch ≅M

∼
h,1(P1,x)×Mg−h,1 of the moduli space of relative stable

mapsM∼
g(P1,x) parameterizing a rubber relative stable map of genus h with

attached a contracting curve of genus g − h.
The piecewise polynomial function φσΓ

decomposes as a product:

φσΓ
= l ⋅ φσTg−h

⋅ φσΓ∖Tg−h
, (46)

where l denotes the length of the edge between the point of attachment of
the contracted tree and the next vertex to the right.

On the component Ch, the pull-back st∗trop(l) correspond to the co-
homology class x1ev∗1([pt.]), fixing a point on the target where the com-
ponent must contract. The class associated to the piecewise polynomial
st∗trop(∑φσΓ∖Tg−h

) agrees with br∗h([pt.]), for the genus h branch morphism
on the left factor of Ch. Finally st∗trop(φσTg−h

) gives the intersection of the
stratum ∆Tg−h with the virtual class of Ch. It follows from [Pan99] that
[Ch]vir ⋅∆Tg−h = λRg−h∣∆Tg−h

, where the superscript R denotes that the λ class

is pulled-back from the right factor of Ch. In conclusion, we have

DR☇g(x,0) ⋅∑
σΓ

∆σΓ
= st∗tropφσΓ

= deg (br∗h([pt.]) ⊠ λRg−h∣∆Tg−h
) , (47)

where the class in parenthesis is a class in M∼
h(P1,x) ×Mg−h,1. The class

pulled back from the left factor has degree Hh(x). From the isomorphism

∆Tg−h ≅
g−h
∏
i=1
M1,1/∣Aut(∣Tg−h∣),
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the fact that the class λg−h splits as the product of λ1’s on each of the factors,
and that λ1 has degree 1/24 onM1,1, one may conclude:

DR☇g(x,0) ⋅∑
σΓ

∆σΓ
=Hh(x) ⋅

1

∣Aut(Tg−h)∣
1

24g−h
, (48)

from which the statement of the proposition follows. □



CHAPTER 6

Leaky Hurwitz Numbers

Tropical Hurwitz numbers admit a natural combinatorial generalization:
one may modify the balancing condition to allow for some amount of leaking
at vertices. One then gets some new combinatorial objects (leaky covers)
that one may view as degenerations (and in a precise sense, tropicalizations)
of twisted differentials. Then one may seek for a correspondence theorem
between the weighted count of leaky covers and some geometric count on
spaces related to twisted differentials. The main obstruction arises from the
fact that on the algebraic geometric side we are lacking a branch morphism.
The perspective introduced in the previous section allows us to bypass this
obstacle.

1. Moduli spaces of leaky covers

We introduce a family of moduli spaces of tropical objects, that are very
much analogous to the spaces of tropical covers of a tropical line.

Definition 1.1 (Leaky cover). Let π ∶ Γ → P1
trop be a surjective map

of metric graphs. We require that π is piecewise integer affine linear, the
slope of π on a flag or edge e is a positive integer called the expansion factor
ω(e) ∈ N>0.

For a vertex v ∈ Γ, the left resp. right degree of π at v is defined as follows.
Let fl be the flag of π(v) pointing to the left and fr the flag pointing to the
right. Add the expansion factors of all flags f adjacent to v that map to fl
resp. fr:

dlv = ∑
f↦fl

ω(f), drv = ∑
f↦fr

ω(f). (49)

The map π ∶ Γ→ P1
trop is called a leaky cover if for every v ∈ Γ

dlv − drv = val(v) − 2 + 2g(v).

Remark 1.2 (Vertex set). For a leaky cover, we fix a vertex set of Γ and
P1
trop that is minimal in the following sense: each vertex of P1

trop contains a
vertex of Γ in its preimage which is of genus greater than 0 or valence greater
than 2.

Example 1.3. Figure 6.1 shows an example of a leaky cover with its
minimal vertex set.

Definition 1.4 (Left and right degree). The left (resp. right) degree of
a leaky cover is the multiset of expansion factors of its ends mapping to −∞
(resp. +∞).

55
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5 3

1

1

1
1

Figure 6.1. A leaky cover of genus 1 and degree (5,−1,−1),
with its minimal vertex set. We do not specify length data in
this picture, as the lengths in Γ are imposed by the distances
of the points in P1

trop. For simplicity, we also suppress the
labels for the ends in this picture.

By convention, we denote the left degree by x+ and the right degree by
x−. In the right degree, we use negative signs for the expansion factors, in
the left degree positive signs. We also merge the two tuples into one vector
which we denote x = (x1, . . . , xn) and call the degree. Here, the labeling of
the ends plays a role: the expansion factor of the end with the label i is xi in
this notation. In x, we can distinguish the expansion factors of the left ends
from those of the right by their sign. It follows from the Euler characteristics
of Γ and from the leaky cover condition that

n

∑
i=1
xi = 2g − 2 + n,

where g denotes the genus of Γ.
An automorphism of a leaky cover is an automorphism of Γ compatible

with π.
If we view the expansion factors of a leaky tropical cover as slopes of

a rational function on Γ, then the divisor of this rational function is the
canonical divisor of Γ.

Definition 1.5 (Canonical divisor). Let Γ be an abstract tropical curve.
The canonical divisor on Γ is given by ∑v∈Γ(2g(v) − 2 + val(v)) ⋅ v.

Definition 1.6 (Rational functions on abstract tropical curves and their
divisors). Let Γ be an abstract tropical curve. A rational function f on Γ is
a continuous function f ∶ Γ → R which is piecewise linear with finitely many
regions of linearity and integer slopes in each of them. The order ordv(f)
of f at a point v is the sum of the outgoing slopes. The divisor of a rational
function f is defined as

(f) ∶= ∑
v∈Γ

ordv(f) ⋅ v.

Remark 1.7. Given a leaky tropical cover π ∶ Γ → P1
trop, we view the

expansion factors on the edges as slopes of a rational function f (up to global
shift). Then, by definition, the divisor (f) equals the canonical divisor of Γ.

The combinatorial type of a leaky cover is the data obtained when drop-
ping the metric of Γ, i.e. keeping the information of the abstract graph
underlying Γ with its genus function, how P1

trop is subdivided, and which
edge is mapped to which together with the expansion factors.



1. MODULI SPACES OF LEAKY COVERS 57

Remark 1.8. The set of all leaky covers of a given combinatorial type
forms an open polyhedron in a vector space parametrizing the lengths of
all edges. The equations are given by the condition that the cycles have
to close up, the inequalities by the fact that edge lengths are positive. We
can identify a point on the boundary of such a polyhedron with the cover
for which we contract the edges whose lengths have been shrunk to zero.
In this way, we can form an abstract polyhedral complex parametrizing all
leaky covers of genus g and degree x. As common in tropical geometry, the
top-dimensional polyhedra in a complex are equipped with a weight, which
is defined to be the index of the lattice given by the equations that the cycles
close up and that vertices have the same image as required times the size of
the automorphism group.

Example 1.9. Consider the leaky cover from Figure 6.1 and its combi-
natorial type. It has four bounded edges, and the equation that the cycle
closes up is 3l1 + l2 = l3 + l4, where l1 and l2 denote the lengths of the upper
edges of the cycle and l3 and l4 the lengths of the lower. The equation that
the two middle vertices have the same image is 3l1 = l3, or, equivalently,
l2 = l4. All leaky covers of this combinatorial type are parametrized by the
points in the 2-dimensional open polyhedron

R4
>0 ∩ {3l1 + l2 − l3 − l4 = 0, l2 − l4 = 0}.

The index of the lattice defined by 3l1 + l2 − l3 − l4 = 0, l2 − l4 − 0 equals the
greatest common divisor of the absolute values of the 2 × 2-minors of the
matrix

(3 1 −1 −1
0 1 0 −1 )

which equals 1. Thus, the weight of the corresponding top-dimensional stra-
tum in the moduli space of leaky covers of genus 1 and degree (5,−1,−1) is
1.

Definition 1.10 (Moduli space of leaky covers). We denote the moduli
space of leaky covers of genus g and degree x, which is the abstract polyhedral
complex as described in Remark 1.8, by Lg,x.

There is a natural vertex evaluation map

ev ∶ Lg,x → [M0,2+r(1,1, ε, . . . , ε)trop/Sr] ,
with r = 2g − 2+n, which plays the role of the branch morphism. This leads
us to the following definition.

Definition 1.11. The leaky Hurwitz number ℓg,x is equal to the
degree of the vertex evaluation map ev.

The degree of a map of weighted abstract polyhedral complexes is the
weighted number of preimages of a point in the open interior of Pr. A
preimage point is weighted by the product of the weight of the polyhedron
in which it lives with the index of the image lattice of this polyhedron under
ev in the natural lattice of Pr.

Example 1.12. The leaky cover in Figure 6.1 contributes to the number
N1,(5,−1,−1) with the weight 1 times the index of the image lattice of this
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Figure 6.2. The count of leaky covers of degree (5,−1,−1)
and genus 1.

polyhedron under ev. (The size of its automorphism group is 1.) By Remark
5.19 of [CJM10], this product equals the index of the linear map given by
the square matrix in which we combine the equations for the weight with
the evaluations. By Example 1.9, the polyhedron of the combinatorial type
of Figure 6.1 is embedded in R4, thus the matrix has size 4. Two of its
lines are given by the equation of the cycle, (3,1,−1,−1), and the equation
that the middle vertices of Γ have the same image, (0,1,0,−1) (see Example
1.9). The second vertex of P1

trop is at distance l3 from the first, the third at
distance l4 from the second. Thus the square matrix to consider is

⎛
⎜⎜⎜
⎝

3 1 −1 −1
0 1 0 −1
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠
.

The index of the lattice of the image of the linear map defined by this matrix
equals the absolute value of its determinant, which is 3. Thus the leaky cover
of Figure 6.1 contributes with weight 3 to the count of N1,(5,−1,−1).

Exercise 41. The degree of the vertex evaluation map (and thus, the
number of leaky covers of genus g and degree x) is well-defined. All leaky
covers in the preimage of a point in the open interior of Pr are trivalent
covers, i.e. each preimage of one of the r vertices of P1

trop contains precisely
one vertex which is not of genus 0 and 2-valent, and that is of genus 0 and
3-valent.

Example 1.13. Figure 6.2 shows the count of leaky covers of degree
(5,−1,−1) and genus 1. The lowest picture has to be counted twice, as it
allows two versions of labeling its ends. The middle picture has an automor-
phism group of size 2, as the two edges of the cycle can be permuted. Thus
the total count equalss 9 + 6 + 3 + 3 = 21.

2. Graph algorithm for leaky Hurwitz numbers

We introduce now the notion analogous to monodromy graphs for trop-
ical Hurwitz numbers.

Definition 2.1. For fixed g and x = (x1, . . . , xn), a graph Γ is a leaky
graph if:
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(1) Γ is a connected, genus g, directed graph. (Here, we do not allow
genus at vertices.)

(2) Γ has n ends which are directed inward, and labeled by the expan-
sion factors x1, . . . , xn. If xi > 0, we say it is an in-end, otherwise it
is an out-end.

(3) All inner vertices of Γ are 3-valent.
(4) After reversing the orientation of the out-ends, Γ does not have

sinks or sources1.
(5) The inner vertices are ordered compatibly with the partial ordering

induced by the directions of the edges.
(6) Every bounded edge e of the graph is equipped with an expansion

factor w(e) ∈ N. These satisfy the leaky condition at each inner
vertex: the sum of all expansion factors of incoming edges equals
the sum of the expansion factors of all outgoing edges plus one.

Exercise 42. Let π ∶ Γ → P1
trop be a preimage under the vertex evalua-

tion map of a point in the open interior of Pr. Then π contributes with the
product of the expansion factors of the bounded edges of Γ times one over
the size of the automorphism group of π to the count of leaky covers.

Exercise 42 essentially proves the following theorem.

Theorem 6.1. The leaky Hurwitz number ℓg,x equals the sum over
all leaky graphs Γ, where each is counted with the product of the expansion
factors of its bounded edges:

ℓg,x =∑
Γ

1

∣Aut(Γ)∣∏e
ω(e).

3. Correspondence theorem

We conclude by giving a geometric counter-part for the numbers ℓg,x,i.e.
we use the perspective of logarithmic geometry to find some moduli spaces
supporting zero-dimensional cycles of degree ℓg,x.

First we wish to compactify the open moduli space of meromorphic one
forms with a prescribed divisor. We do so by using logarithmic stable maps.

Informally, let Lg,x denote the moduli space whose objects are diagrams
of the form:

C
π

��

s

""
P(OC ⊕ ωπ)oo

B

, (50)

where C is a family of semistable n-pointed curves, and s is a section of the
projectivization of the relative dualizing sheaf with orders of contact with
the 0 and ∞ section at the marked points specified by the vector of integers
x.

1We do not consider leaves to be sinks or sources.
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The moduli space Lg,x of tropical leaky covers gives a cone-complex in
Mtrop

g,n (that we may extend to be a subdivision), and the leaky graphs give
naturally a piecewise polynomial function on such a subdivision of Mtrop

g,n

by considering ev∗ t1∏(ti+1 − ti). We thus get a cohomology class α on a
birational model of the moduli space of curves. We then obtain the following
correspondence theorem.

Theorem 6.2. The intersection between the proper transform of st∗(Lg,x)
and α has degree equal to ℓg,x.

Exercise 43 (open ended). Recently many different compactifications
of the locus of meromorphic differentials with prescribed divisors have been
studied by several groups of people (see [FP18, Sau19]). How do these fit
into this story?

Exercise 44 (open ended). All of our construction for leaky graphs
assume that the vector x has both positive and negative entries (i.e. we are
studying meromorphic 1-forms rather then holomorphic ones). How should
the story be adapted if one wants to study an appropriate compactification
of spaces of divisors of holomorphic 1-forms?
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