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A mantra in modern algebraic geometry is "objects are best studied in families." Moduli spaces
embrace this in the fullest sense, revealing how varieties or schemes behave and relate to each
other as they deform or degenerate. A prime example is Mg,n, which parametrizes stable n-
marked curves of genus g, and which, as a compactification of the space of smooth curvesMg,n,
gives insight into degenerations of smooth curves in families. Since curves naturally appear in
many different contexts,Mg,n serves as a testing ground for exploration in diverse areas.

One natural goal when studying a space like Mg,n is to consider other spaces which are bi-
rational to it, that is, spaces which are very similar but different in subtle ways. Investigating
the differences can then give new information and interpretations of the original space. To this
end, studying alternative compactifications of Mg,n birational to the Deligne-Mumford com-
pactification Mg,n has proven to be a fruitful endeavor. My research explores and utilizes such
compactifications, their inherent combinatorial structure, and how they related to each other in
order to gain deeper insight into families of curves.

My work can broadly be grouped according to the following questions.

• How does the intersection theory ofMg,n relate to other birational compactifications?
• Can we classify all possible compactifications ofMg,n?
• What do the cones of effective classes on the moduli space of curves look like?

Families of curves are a natural starting place to test and frame these questions, but they are
readily generalized to higher-dimensional varieties as well.

One recurring theme of my research is the utilization of combinatorics to make difficult geometric
problems more tractable. What makes this possible is the recursive structure of the moduli space
of curves: certain subspaces ofMg,n called boundary strata are isomorphic to products of smaller
moduli spaces of curves

∏
Mgi,ni

. These subspaces stratify Mg,n by topological type, which
allows us to associate to each boundary stratum (and to each curve) a dual graph (see Figure 1).
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Figure 1. A nodal 5-marked curve and its dual graph representation.

Dual graphs are incredibly useful; for example, the intersection theory of Mg,n can be framed
in terms of manipulations of graphs, and entire families of compactifications can be defined
just in terms of specified collections of graphs. This graphical interpretation of the boundary
of Mg,n has intriguing connections to surprising areas of math such as information theory and
evolutionary dynamics via an association with phylogenetic trees.
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1. Intersection Theory and Alternate Compactifications

In [BC18], Cavalieri and I begin the investigation of the intersection theory of particular tauto-
logical classes, called ω-classes. Let ρi : Mg,n → Mg,1 be the rememberful morphism which
forgets all markings except the ith. We prove the following explicit graph formula for arbitrary
monomials of ω-classes onMg,n (the ∆P refer to specific boundary strata).

Theorem 6 ([BC18]). For 1 ≤ i ≤ n, let ki be a non-negative integer, and let K =
∑n
i=1 ki. For any

partition P = {P1, . . . , Pr} ` [n], define αj :=
∑
i∈Pj ki. With ∆P the pinwheel stratum defined by P , the

following formula holds in RK(Mg,n):

n∏
i=1

ωkii =
∑
P `[n]

[∆P ]

`(P)∏
j=1

ψ
αj
•j

(−ψ•j −ψ?j)
1−δj

,

where δj = δ1,|Pj| is a Kronecker delta and we follow the standard convention of considering negative
powers of ψ equal to 0.

We also deduce a numerical corollary when the intersection is top-dimensional.

Corollary 7 ([BC18]). For 1 ≤ i ≤ n, let ki be a non-negative integer, and let
∑n
i=1 ki = 3g − 3 + n.

For any partition P = {P1, . . . , Pr} ` [n], define αj :=
∑
i∈Pj ki. Then

∫
Mg,n

n∏
i=1

ωkii =
∑
P `[n]

(−1)n+`(P)
∫
Mg,`(P)

`(P)∏
i=1

ψ
αi−|Pi|+1
•i .

These ω-classes can be seen as coming from a special type of compactification ofMg,n, called a
Hassett space, or moduli spaces of weighted pointed stable curves, first defined in [Has03]. This
family of compactifications, introduced in [Has03], comes by way of Hassett spaces, or moduli
spaces of weighted pointed stable curves. Define weight data A = (a1, . . . , an) as a collection of
rational numbers in the interval (0, 1] such that 2g− 2+

∑
ai > 0. Then a genus g pointed curve

(C;p1, . . . , pn) is A-stable if

• C has at worst nodal singularities, with pi ∈ C smooth;
• the divisor KC + a1p1 + · · ·+ anpn is ample;
• if a collection of the pi coincide, the sum of the corresponding ai is less than or equal to

one.

In the Deligne-Mumford compactification, when two points wish to collide, they instead "bubble-
off" to a new rational component; in Hassett spaces, two points are instead allowed to collide so
long as their weights are not too high. Given the poset structure on weight datas of the same
length determined by A ≤ B if ai ≤ bi for all i, we have reduction morphisms r :Mg,B →Mg,A
which lower the weights of B to those of A.

An important observation is that tautological classes on Mg,A pull back under r to tautological
classes onMg,B in highly combinatorial ways. In particular, for the cotangent classes ψi,

r∗ψi = ψi −DB,A,
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where DB,A parametrizes all B-stable curves such that the ith marked point lives on a rational
component which becomes unstable with the A weights.

Ourω-classes are identified as pullbacks from a heavy-light Hassett space of light-weight ψ-classes.
In the heavy-light case, the weight data is given by (1(n), ε(m)). In these spaces, any number of
ε-weighted marked points (light points) may come together, but none may collide with the 1-
weighted points (heavy points). In [BC20], we generalize Theorem 6 to the case of arbitrary
weight data, allowing us to write any arbitrary intersection of weighted ψ-classes in terms of a
combinatorial expression of unweighted ψ-classes.

One way to package these intersection numbers is through generating functions. The genus g
Gromov-Witten potential of a point is defined to be

Fg(t0, t1, . . .) = 〈e~τ〉g =
∞∑
n=0

1

n!
〈~τ, . . . , ~τ〉g,n

where 〈~τ, . . . , ~τ〉g,n is the Witten bracket which corresponds to a particular integral of ψ-classes.
The total Gromov-Witten potential F is obtained by summing over all genera and adding a
formal variable to keep track of genus.

In the case of no marked points, we may define the κ-classes as pushforwards of powers of
ψ-classes under forgetful morphisms. We may define a κ-potential K similarly to the Gromov-
Witten potential above, exchanging si for ti and σi for τi, so that the coefficients of K will
correspond to monomials of the form κ`00 · · · κ

`3g−3

3g−3 . In [BC21], we prove the following.

Theorem 2 ([BC21]). The κ-potential K is a change of variables of F given by si = Si(ti+1), where Si is
the ith elementary Schur polynomial.

This theorem recovers a result in [MZ00], though our methods differ considerably. Further, we
are able to apply the change of variables Witten’s conjecture (Kontsevich’s theorem by [Kon92])
that the Witten potential is annihilated by the Virasoro operators, allowing us to compute the
κ-class Virasoro operators.

Corollary 3 ([BC21]). The κ-potential is annihilated by appropriately transformed Virasoro operators.

1.1. Work in progress. A partial classification of all sufficiently nice compactifications of Mg,n

is given in combinatorial terms in [Smy13], and in [BKN21] the authors use related ideas to
completely classify all modular compactifications by Gorenstein curves with distinct marked
points in genus one via Q-stable spaces M1,n(Q), dependent on partition data Q. In ongoing
work with Bozlee, we achieve an analogous result in genus zero while allowing marked points
to collide, using a generalization of Hassett spaces that depend on a simplicial complex K on
the set {1, . . . , n}. In this setup, a collection of marked points S ⊆ {p1, . . . , pn} are allowed to
collide if and only if all indices in S share a simplex in K. We show that in genus zero, the spaces
M0,K recover all modular (i.e., points in the boundary have a natural modular interpretation)
compactifications by Gorenstein curves with smooth markings.

Theorem 5 ([BB]). If M is a modular compactification of M0,n by Gorenstein curves with smooth
markings, thenM ∼=M0,K for some simplicial complex K.
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We also combine the compactifications in [BKN21] with the K-compactifications, and we conjec-
ture that these combined spaces complete the classification in genus one.

Conjecture 8 ([BB]). If M is a modular compactification of M1,n by Gorenstein curves, then M ∼=

M1,K(Q) for some simplicial complex K and some partition data Q.

In a related ongoing project, Bozlee and I show that the ψ-class intersection theory of Mg,K in
arbitrary genus is a natural generalization of that of Hassett spaces, and we have a conjectural
description of the parallel theory for Mg,K(Q). This generalizes [Smy19], in which the ψ-class
theory is worked out for a special subfamily of Q-stable spaces.

2. Extremal Classes

The cone of effective divisors on a projective variety X dictates its birational geometry, and when
X is a moduli space, birational models of X often have new modular interpretations and useful
connections to each other. For this reason and others, the structure of the cone of effective divisors
of Mg,n has attracted a great deal of attention, in for example [CC14, CT15, Opi16, Mul17b,
Mul20]. More generally, there has been interest in probing the finer aspects of the birational
geometry of moduli spaces by studying the cones of effective higher codimension cycles, e.g.,
[Mul17a, Che18, Mul19]. Cones are naturally defined by their extremal rays, and determining
which classes are extremal in these cones is one avenue of investigation. An effective class α on
a space X is called extremal if for every effective decomposition

α =
∑

ai[Ei],

the classes [Ei] are all proportional to α. My research has studied two large families of effective
classes onMg,n in this context: hyperelliptic classes and boundary strata.

The hyperelliptic locus in Mg,n, the subset of the moduli space corresponding to curves which
admit a degree two map to P1, has been defined and analyzed in several ways. In [EH87, Tar15,
CT16, CC15], the hyperelliptic loci have marked points at the Weierstrass points; less commonly,
the marks are placed on conjugate pairs of points [Log03]. In [CT16], Chen and Tarasca show
that genus-two hyperelliptic classes with marked Weierstrass points are rigid and extremal in the
cone of effective classes onM2,n. In [Bla20], I generalize this result by allowing hyperelliptic loci
to have marked Weierstrass points, marked conjugate pairs, and condition-free marked points.
This increase in flexibility allows me to prove the following theorem.

Theorem 9 ([Bla20]). The class
[
H2,`,2m,n

]
of hyperelliptic curves in genus two with `marked Weierstrass

points, m marked conjugate pairs, and n condition-free marked points is rigid and extremal in the pseudo-
effective cone of codimension-(`+m) classes onM2,`+2m+n for all `,m,n ≥ 0.

Some of the techniques utilized in proving Theorem 9 lend themselves to other families of ef-
fective classes on Mg,n, including the boundary strata defined above. All boundary divisors on
Mg,n are known to be extremal [CC15], as are sporadic strata in higher codimension. In [Bla21],
I analyze morphisms between the moduli spaces of rational curves to establish new techniques
to prove extremality in higher codimension, providing evidence for the following conjecture.

Conjecture 10 ([Bla21]). All boundary strata inMg,n are extremal.
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As a consequence of the new techniques developed, I am able to show that a large family of
rational tails strata – boundary strata whose dual graphs are trees – are extremal in their effective
cones. I am also able to completely address the genus zero situation.

Theorem 11 ([Bla21]). All boundary strata inM0,n are extremal.

3. Future Work

3.1. Alternative compactifications. In addition to the ongoing work on additional compactifi-
cations of Mg,n and classification problems like Conjecture 8, I also have early computational
evidence that the ψ-class intersection theory of more general modular compactifications ofMg,n

can be expressed in a combinatorial way similar to that of Hassett spaces or Q-stable spaces. The
partial classification given in [Smy13] is highly combinatorial in nature, and unifying the combi-
natorics of that classification with the combinatorics of ψ-class intersections is of great interest to
me.

I am also interested in using Corollary 3 to derive recursions among κ-classes, a problem which
has both theoretical and computational implications. Computationally, κ-class intersection num-
bers were available previously ([AC96]), but the algorithm’s heavily recursive structure was prob-
lematic in high genus. Corollary 3 allows for a far more efficient computation. Being able to
compute relations among κ-classes will also likely lead to extensions of results such as in [Pan12]
for curves of compact type and help determine the structure of the κ-ring over all ofMg,n.

I have also begun to investigate the connections between Hassett spaces and parameter spaces of
polygons in R3, an object of interest to mathematicians who work with random polygons. The
space of equilateral polygons in R3 can be seen as the GIT quotient (P1)n � PGL(2,C) ([Hu99])
which is birationally equivalent toM0,n, or as a limit of Hassett spaces. There are several natural
questions that arise from this connection, such as how the (well-studied) intersection theory of
M0,n may be informative on polygon space, or if the Weil-Peterson metric onM0,n can be related
to the natural metric on polygon space.

3.2. Extremal classes. The natural generalization of Theorem 9 to hyperelliptic classes in higher
genus is still an open problem, but the techniques I use to handle the genus two case are largely
inductive. Thus, given a finite number of base cases in each genus, the full result will follow.
This requires a deeper understanding of hyperelliptic loci in general and remains an interesting
area for future research. The situation for rational tails boundary strata is similar, but for ar-
bitrary boundary strata, the theory becomes much more nuanced, and new techniques need to
be developed. However, preliminary results show that the techniques which were successful in
analyzing the hyperelliptic loci and boundary strata can be applied to some broader families of
classes to better understand their cones as well.

Related to these topics is a broader question of what the effective cones ofMg,n look like. Even in
genus zero and codimension one, we are still lacking a complete picture: work in [CT15], [GK16],
and [HKL18] has shown that M0,n is not a Mori dream space for n ≥ 10; [CC14] and [Mul17b]
show the same with n ≥ 3 for M1,n and M2,n respectively. While a general answer still seems
very far away, there are numerous cases that appear to be within reach.
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